CSC236 Intro. to the Theory of Computation

Lecture 6: More D&C Complexity

Amir H. Chinaei, Fall 2016

Office Hours: W 2-4 BA4222

ahchinaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchinaei/

Course page:
http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section page:
http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html
review

- **Last week**
 - introduced the application of recurrence relations to complexity of d&c algorithms
 - in particular, recursive binary search

- **This week**
 - application of recurrence relations to complexity of d&c algorithms
 - in particular, merge sort, and closest pairs of points
 - master theorem
Example 63: mergeSort

def mergeSort(A, b, e):
 if b == e: return A[b:1]
 m = (b + e) // 2
 mergeSort(A, b, m)
 mergeSort(A, m+1, e)
 # merge sorted A[b..m] & A[m+1..e] back into A[b..e]
 B = A.copy()
 c = b
 d = m+1
 for i in range(b, e+1):
 if d > e or (c <= m and B[c] < B[d]):
 A[i] = B[c]
 c += 1
 else:
 # d <= e and (c > m or B[c] >= B[d])
 A[i] = B[d]
 d += 1
 return A
Example 63: mergeSort

• a recurrence relation for complexity of mergeSort
Example 63: `mergeSort` ... closed form

\[T(\hat{n}) = \begin{cases} 1 & \hat{n} = 1 \\ 2T\left(\frac{\hat{n}}{2}\right) + \hat{n} + 1 & \hat{n} > 1 \end{cases} \]

\[\hat{n} = 2^k \]

\[= \hat{n} \log \hat{n} + 2\hat{n} - 1 \]
Example 63: mergeSort ... $T(n)$ increasing

- Since $T(n)$ is increasing (for prove see Lemma 3.6),

$$T\left(\frac{n}{2}\right) \leq T(n) \leq T(\hat{n}) \quad \text{when} \quad 2^{k-1} \leq n \leq 2^k$$
Example 63: mergeSort

- calculating a lower bound
Example 63: mergeSort

- calculating a lower bound
Example 63: mergeSort

- calculating an upper bound