CSC236 Intro. to the Theory of Computation

Lecture 5: Recurrences and D&C

Amir H. Chinaei, Fall 2016

Office Hours: W 5-4 BA4222

ahchinaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchinaei/

Course page:
http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section page:
http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html
review

- so far
 - different variants of induction
 - recurrence relations
 - introduced the application of recurrence relations to complexity of recursive algorithms

- this week
 - application of recurrence relations to complexity of Divide & Conquer algorithms
recursive algorithms

- normally reduce/split the problem to some problems of smaller size
 - $\text{factorial}(n - 1)$ is smaller vs. $\text{factorial}(n)$
 - $\text{fib}(n - 1)$ and $\text{fib}(n - 2)$ are smaller vs. $\text{fib}(n)$
 - $\text{mergeSort}(A, \ 1^{\text{st}} \text{ half})$ and $\text{mergeSort}(A, \ 2^{\text{nd}} \text{ half})$ are smaller vs. $\text{mergeSort}(A)$
 - $\text{binSearch}(x, \ A, \ 1^{\text{st}} \text{ half})$ and $\text{binSearch}(x, \ A, \ 2^{\text{nd}} \text{ half})$ are smaller vs. $\text{binSearch}(x, \ A)$

- recurrences
 - towards the complexity of D&C Alg.
def binSearch(x, A, b, e):
 if b == e:
 if x == A[b]:
 return b
 else:
 return -1
 else:
 m = (b + e) // 2 # midpoint
 if x <= A[m]:
 return binSearch(x, A, b, m)
 else:
 return binSearch(x, A, m+1, e)
Example 61: *binSearch*

- a recurrence relation for complexity of *binSearch*
Example 61: *binSearch*

- guessing (roughly calculating) a closed form
Example 61: *binSearch*

- calculating a lower bound
Example 61: binSearch

- calculating a lower bound
Example 61: \textit{binSearch}

- calculating an upper bound
Example 61: binSearch

- calculating an upper bound
notes:
notes: