Strong Induction
recall

- use all resources available to you
 - before it becomes too late!
- what resources?
 - office Hours:
 - M 2-3:30 in PT286C, W 2-4 BA4222, F 3:30-4:30 BA4270
 - the course page and our section page
 - the CS Help Centre
 - the course forum
 - study groups and Peer Instruction
 - email ahchinaei @ cs.toronto.edu
review

❖ Last week
 ▪ Simple Induction
 • AKA: Mathematical Induction or Principle of Mathematical Induction
 ▪ 17 examples

❖ This week
 ▪ Strong Induction
 • AKA: Complete Induction or Second Principle of Mathematical Induction

❖ Next week
 ▪ Structural Induction
 ▪ Well Ordering
Simple Induction

- It's a rule of inference:

\[
\begin{array}{c}
P(b) \\
P(k) \rightarrow P(k+1) \\
P(n) \\
\end{array} \quad \forall k \geq b \in \mathbb{N} \quad \forall n \geq b \in \mathbb{N}
\]

- After all,
 - To show that all domino pieces fall over, we should show that
 1) there is a starting point, i.e., \(P(b) \) holds
 and 2) all pieces are set in a well order such that
 falling of piece \(k \) implies falling of piece \(k+1 \)
 i.e., and \(P(k) \rightarrow P(k+1) \) holds too.
yet another example

- **Example 19.** A student who went to office hour 01 has provided the following claim and proof. Is it valid?

- **Conjecture:** Doubts in csc236 can be clarified by further discussion each week (e.g., going to the week’s office hours).
 - Let $P(n)$ denotes d_n—read doubts of week n—can be clarified by further discussion.
 - Proof by simple induction.
 - **Basis step:** $P(1)$ holds as new doubts were clarified in office hours of week 01.
 - **Inductive step:** We assume that doubts of week k can be clarified by further discussion in that week. We need to show that doubts of week $k+1$ can be clarified too. There are two cases: doubts of week $k+1$ are either from week k (that can be clarified by further discussion, based on the I.H.) or they are new doubts (basis step). This completes the inductive step.
 - Therefore, by simple induction, all doubts in csc236 can be clarified by further discussion.

Strong Induction 2-5
proof by strong induction

- **recipe:**
 - to prove that $P(n)$ is true for all natural numbers n, we should demonstrate these steps:
 - **Proof method:** “strong induction”
 - **Basis step:** show that $P(n)$ is true for some starting point(s), usually 0 or 1 but not always
 - **Inductive step:** show that $P(k) \rightarrow P(k + 1)$ is true for all natural numbers k greater than the starting point.
 - to complete the inductive step, assume H —i.e., $P(i)$— holds for all i’s where $b \leq i \leq k$ for an arbitrary natural number k, show that C must be true.
revisit: proof by simple induction

fall of the $k+1$th piece is implied by fall of the previous piece, k

In the Inductive Step, we show that:

$$f(d_k) \text{ implies } f(d_{k+1})$$
proof by strong induction

fall of the $k+1^{th}$ piece is implied by fall of all previous pieces, $b..k$

In the Inductive Step, we show that:

$$f(d_b) \land f(d_{b+1}) \land .. \land f(d_k) \text{ implies } f(d_{k+1})$$
Example 20:

\(P(n) \): \(n \) can be written as product of prime numbers; \(\forall n \geq 2 \in \mathbb{N} \).

scratch work

<table>
<thead>
<tr>
<th>(n)</th>
<th>products</th>
<th>(P(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...

Strong Induction 2-9
Example 20: \(P(n) \): \(n \) can be written as product of primes; \(\forall n \geq 2 \in \mathbb{N} \).

Proof by Strong Induction

Basis step: \(P(2) \) holds because 2 is prime.

Inductive step:

Inductive Hypothesis: Assume \(P(i) \) holds for all \(i \in \mathbb{N} \) where \(2 \leq i \leq k \) for any arbitrary fixed \(k \in \mathbb{N} \), i.e., we assume all numbers less than or equal \(k \) can be written as product of primes.

We need to show that \(P(k+1) \) holds too, i.e., \(k+1 \) can be written as product of primes too.

There are two cases: if \(k+1 \) is prime, we are done as \(P(k+1) \) holds.

If \(k+1 \) is not prime, it’s composite and can be written as:
Example 20: $P(n)$: n can be written as product of primes; $\forall n \geq 2 \in \mathbb{N}$.

If $k+1$ is not prime, it's composite and can be written as:

$$k+1 = m \cdot n \text{ where } m, n \in \mathbb{N} \text{ and } 2 \leq m, n < k+1, \text{ i.e., } 2 \leq m, n \leq k$$

By the Inductive hypothesis, m and n each can be written by product of primes. Therefore, $k+1$ is a product of primes, i.e., $P(k+1)$ holds too.

This completes the inductive step.

Therefore, by strong induction, it proves that $\forall n \geq 2 \in \mathbb{N}$, n can be written as product of primes.
Example 21:

\(P(n) \): any postage \(n \) that is 18 cents or more can exactly be stamped using just 4-cent and 7-cent stamps.

scratch work

<table>
<thead>
<tr>
<th>(n)</th>
<th>stamps</th>
<th>(P(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>14+27</td>
<td>✓</td>
</tr>
</tbody>
</table>

\[\ldots \quad \ldots \quad \ldots \]
Example 21: Proof by Strong Induction

$P(n): n$ can be written as $a*4 + b*7; \ \forall n \geq 18 \in \mathbb{N}.$
Example 21: \[P(n): n \text{ can be written as } a*4 + b*7; \quad \forall n \geq 18 \in \mathbb{N}. \]
Example 22:

Make a conjecture to specify the minimum number of breaks to break a chocolate bar to all chocolate squares. Proof your claim.

scratch work
Example 22:
Example 22:
Example 23:

Let \(f(n) = \begin{cases} 2^n & n = 1 \\ f^2(\lfloor \sqrt{n} \rfloor) + 2f(\sqrt{n}) & n > 1 \end{cases} \), prove \(f(n) \) is a multiple of 8.

scratch work
Example 23:
Example 24:

Prove that every simple polygon with \(n \) sides can be composed of \(n-2 \) triangles.

scratch work
Example 24: $P(n)$: An n-sided polygon can be triangulated to $n-2$ triangles; $\forall n \geq 18 \in \mathbb{N}$.
Example 24: P(n): An \textit{n-sided} polygon can be triangulated to \textit{n}-2 triangles; \(\forall n \geq 18 \in \mathbb{N} \).
strong induction recipe (revisited)

0. write out the claim as: “Let \(P(n) \) denote the claim in terms of \(n \)” follow next steps to show that \(P(n) \) holds \(\forall n \geq b \in \mathbb{N} \), where \(b \) is staring point(s)

1. write out “Proof method: strong induction”

2. write out “Basis step:” followed by reasoning that \(P(b) \) is true

3. write out “Inductive step:”
 3.1. write out “Inductive hypothesis: we assume \(P(i) \) is true \(\forall i, b \leq i \leq k \)” where \(P(i) \) is the claim in terms of \(i \)
 3.2. reason that \(P(k+1) \) is true
 note 1: in your reasoning here, you must use the inductive hypothesis
 note 2: be sure your reasoning is true for any \(k \geq b \), including \(k=b \)
 3.3. write out “This completes the inductive step”

4. write out “This proves \(P(n) \) is true for \(\forall n \geq b \in \mathbb{N} \)” where \(P(n) \) is the claim in terms of \(n \)

5. Indicate end of proof by “\(\Box \)”.

Strong Induction 2- 24