CSC236 Intro. to the Theory of Computation
Lecture 12: RE→NFA→DFA→RE
¬ pumping → ¬ RL

Amir H. Chinaei, Fall 2016
Office Hours: W 2-4 BA4222
ahchinaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchinaei/

Course page:
http://www.csf.toronto.edu/~cs236h/fall/index.html
Section page:
http://www.csf.toronto.edu/~cs236h/fall/amir_lectures.html

review

- last lecture
 - FSA (nondeterministic and deterministic) = RE
 - NFA → DFA → RE → NFA

- this week:
 - more on RE→NFA
 - application of pumping lemma in proving a language is not regular

NFA, DFA, regex

- NFA → DFA → regex → NFA
 - BASE CASES
 - regex → NFA
 - ∅
 - ε
 - b

NFA, DFA, regex

- NFA → DFA → regex → NFA
 - RECURSIVE CASES
 - regex
 - NFA
 - $r_1 + r_2$

NFA, DFA, regex

- NFA → DFA → regex → NFA
 - RECURSIVE CASES
 - regex
 - NFA
 - $r_1 \cdot r_2$

NFA, DFA, regex

- NFA → DFA → regex → NFA
 - RECURSIVE CASES
 - regex
 - NFA
 - r_1^*
Example 104

\[0 (0 + 1) * 1 \]

\[NFA \Rightarrow DFA \Rightarrow \text{regex} \Rightarrow NFA \]

\[\text{Example 105} \]

\[0 (0 + 1) * 1 \text{ revisited (2nd algorithm)} \]

- make a transition from each symbol of alphabet to the next state
- make an e-transition from each brace to the next state
- make 3 e-transitions for each *
- make 2 e-transitions for each +

\[NFA \Rightarrow DFA \Rightarrow \text{regex} \Rightarrow NFA \]

NFA=DFA=regex

- \[NFA \Rightarrow DFA \Rightarrow \text{regex} \Rightarrow NFA \]
 - nicely done!
- \[NFA \Rightarrow DFA \Rightarrow \text{regex} \Rightarrow NFA \]
 -
- \[NFA \Rightarrow DFA \Rightarrow \text{regex} \Rightarrow NFA \]
 - analogy:

pumping lemma

- If \(L \) is RL, then \(\exists p \geq 1 \) such that \(\forall \omega \in L, |\omega| \geq p, \omega = xyz \):
 - \(|xy| \leq p \)
 - \(|y| > 0 \)
 - \(\forall k \geq 0, xy^kz \in L \)

application of pumping lemma is in proving non-regularity

- assume the language is regular, apply the pumping lemma and run to a contradiction
- note:

Example 105

- Prove \(L = \{ \omega \in \Sigma^* | \omega = a^n b^n \ n \geq 0 \} \) is not regular.

final notes

- you have enhanced your analytical skills, in particular in systematic reasoning, proofs, program correctness, and simple computational models
- next?
 - CSC263: more algorithm analysis & data structures
 - CSC373: more algorithms complexities and paradigms
 - ...
 - CSC448: more formal languages and automata
- if I can be of any help, drop me a line or stop by BA4222.