Notation

- \(\Sigma \): finite non-empty set of symbols, e.g., \(\{ a, b \} \)
- \(\Sigma^k \): concatenation of symbols of \(\Sigma \), \(k \) times, \(k \geq 0 \)
 - e.g., \(\Sigma^3(\{a, b\}) \), \((a, b, a, bb, ab, ba) \), …
 - \(\Sigma = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ... \)
- string \(\in \Sigma \), e.g., \(ababa \)
- \(|\text{string}| \): length of string, e.g., \(|ababa| = 6 \)
- \(s^R \): reversal of string \(s \), e.g., \(ababa^R = ababab \)
- \(s, t \): concatenation of strings \(s \) and \(t \)
- language \(\subseteq \Sigma \), e.g., \(L_{ab} = \{ \omega \in \Sigma | \omega \text{ has odd # of } a \} \)

Language Operations

- \(L_1 \cup L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ or } \omega \in L_2 \} \)
 - e.g., \(L_{ab} \cup L_{aa} = \{ \omega \in \Sigma^* | \omega \text{ has odd number of } a \text{'s or does not end with } a \} \)
- \(L_1 \cap L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ and } \omega \in L_2 \} \)
 - e.g., \(L_{aa} \cap L_{ab} = \{ \omega \in \Sigma^* | \omega \text{ has odd number of } a \text{'s and does not end with } a \} \)
- \(L_1 - L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ and } \omega \notin L_2 \} \)
 - e.g., \(L_{aa} - L_{ab} = \{ \omega \in \Sigma^* | \omega \text{ has odd number of } a \text{'s and ends with } a \} \)
- \(\overline{L_1} = \{ \omega \in \Sigma^* | \omega \notin L_1 \} \)
 - e.g., \(\overline{L_{ab}} = \{ \omega \in \Sigma^* | \omega \text{ ends with } a \} \)
- \(L_1^R = \{ \omega \in \Sigma^* | \omega^R \in L_1 \} \)
 - e.g., \(L_{ab}^R = \{ \omega \in \Sigma^* | \omega \text{ do not start with } a \} \)

Regex

- so far, we have explicitly seen
 - RL can be shown by FSA
 - RL can be shown by set description
- another way to define RL is by:
 - Regular Expressions
 - aka regex, RE
RL: formal definition (revisit)

- Let Σ be the alphabet:
 - the empty set, \emptyset, is a RL
 - the set $\{a\}$ is a RL
 - for each $a \in \Sigma$, the set $\{a\}$ is a RL
 - if L_1 and L_2 are regular languages, then
 - union: $L_1 \cup L_2$ is a RL
 - concatenation: $L_1 \cdot L_2$ is a RL
 - Kleene star: L_1^* is a RL
- No other RL over Σ exists.

$L(r)$ is defined by structural induction

- **basis step:**
 - if r is a regex defined by basis step of the definition,
 - $L(\emptyset)$ is a RL
 - $L(\varepsilon)$ is a RL
 - $L(a)$, for any $a \in \Sigma$, is a RL
- **inductive step:**
 - if r_1, r_2 are regex's defined by ind step of the definition,
 - $L(r_1 + r_2) = L(r_1) \cup L(r_2)$ is a RL
 - $L(r_1 \cdot r_2) = L(r_1) \cdot L(r_2)$ is a RL
 - $L(r_1^*) = L(r_1)^*$ is a RL

regex examples (96)

- Assume $\Sigma = \{0,1\}$
 - \emptyset, ε, 0, 1, 0+1, 00, 01, 10, 11, 000, 111,
 - $L((0+1)^*)$
 - $L(0^*)$
 - $L((10)^*)$
 - $L(10^*)$

regex examples

notes

- Example 83: (revisit)
- Example 84: (revisit)
- Example 85: (revisit)
Example 97

- Prove $L_{B6} = L(r_{B6})$ where
 - $L_{B6} = \{ \omega \in \{0,1\}^* | \omega \text{ starts and ends with different bits} \}$
 - $r_{B6} = 0.(0+1)^*1 + 1.(0+1)^*0$

regex identities

- communitativity of union:
- associativity of union:
- associativity of concatenation:
- left distributivity:
- right distributivity:
- identity for union:
- identity for concatenation:
- annihilator for concatenation:
- idempotence of Kleene star:

NFA, DFA, regex

NFA, DFA, regex

notes