CSC236 Intro. to the Theory of Computation

Lecture 11: fsa and regular expressions

Amir H. Chinaei, Fall 2016

Office Hours: W 2-4 BA4222

ahchinaei@cs.toronto.edu
http://www.cs.toronto.edu/~ahchinaei/

Course page:
http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section page:
http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html
review of FSA

- last week
 - FSA and regular languages.

- this week:
 - FSA and regular expressions
notation

- **Σ**: finite non-empty set of symbols, e.g., \{a, b\}
- **Σ^k**: concatenation of symbols of Σ, k times, \(\geq 0\)
 - e.g., Σ^0: \{ε\}, Σ^1: \{a, b\}, Σ^2: \{aa, bb, ab, ba\}, ...
- **Σ^* = Σ^0 \cup Σ^1 \cup Σ^2 \cup ...**
- string \(\in Σ^*\), e.g., abbaba
- |string|: length of string, e.g., |abbaba| = 6
- **s^R**: reversal of string s, e.g., abbaba^R = ababba
- **s. t**: concatenation of strings s and t
- **language** \(\subseteq Σ^*\), e.g., \(L_{86} = \{\omega \in Σ^* | \omega \text{ has odd # of } a\}\)
language operations

- \(L_1 \cup L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ or } \omega \in L_2 \} \)
 - e.g., \(L_{86} \cup L_{88} = \{ \omega \in \Sigma^* | \omega \text{ has odd number of } a's \text{ or } \omega \text{ does not end with } a \} \)

- \(L_1 \cdot L_2 = \{ \omega = s \cdot t \in \Sigma^* | s \in L_1, t \in L_2 \} \)
 - e.g., \(L_{86} \cdot L_{88} = \{ \omega \in \Sigma^* | \omega \text{ has odd number of } a's \text{ followed by a string that does not end with } a \} \)

- \(L_1^* = \{ \varepsilon \} \cup \{ \omega \in \Sigma^* | \exists s_1, s_2, \ldots, s_n \in L_1 \text{ such that } \omega = s_1 \cdot s_2 \cdot \ldots \cdot s_n \text{ for some } n \} \)
 - e.g., \(L_{86}^* = \{ \omega \in \Sigma^* | \omega \text{ concatenation of any number strings that have odd number of } a \} \)
language operations

- \(L_1 \cap L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ and } \omega \in L_2 \} \)
 - e.g., \(L_{86} \cap L_{88} = \{ \omega \in \Sigma^* | \omega \text{ has odd number of } a's \text{ and does not end with } a \} \)

- \(L_1 - L_2 = \{ \omega \in \Sigma^* | \omega \in L_1 \text{ and } \omega \notin L_2 \} \)
 - e.g., \(L_{86} - L_{88} = \{ \omega \in \Sigma^* | \omega \text{ has odd number of } a's \text{ and ends with } a \} \)

- \(\overline{L_1} = \{ \omega \in \Sigma^* | \omega \notin L_1 \} \)
 - e.g., \(\overline{L_{88}} = \{ \omega \in \Sigma^* | \omega \text{ ends with } a \} \)

- \(L_1^R = \{ \omega \in \Sigma^* | \omega^R \in L_1 \} \)
 - e.g., \(L_{88}^R = \{ \omega \in \Sigma^* | \omega \text{ do not start with } a \} \)
regex

- so far, we have explicitly seen
 - RL can be shown by **FSA**
 - RL can be shown by **set description**

- another way to define RL is by:
 - **Regular Expressions**
 - aka **regex**, **RE**
RL: formal definition (revisit)

- let Σ be the alphabet:
 - the empty set, \emptyset, is a RL
 - the set $\{\varepsilon\}$ is a RL
 - for each $a \in \Sigma$, the set $\{a\}$ is a RL
 - If L_1 and L_2 are regular languages, then
 - union: $L_1 \cup L_2$ is RL
 - concatenation: $L_1 \cdot L_2$ is a RL
 - Kleene star: L_1^* is a RL

- no other RL over Σ exists.
\(L(r) \) is defined by structural induction

basis step:
- if \(r \) is a regex defined by basis step of the definition,
 - \(L(\emptyset) \) is a RL
 - \(L(\varepsilon) \) is a RL
 - \(L(a) \), for any \(a \in \Sigma \), is a RL

inductive step:
- if \(r_1, r_2 \) are regex’s defined by ind step of the definition,
 - \(L(r_1 + r_2) = L_1(r_1) \cup L_2(r_2) \) is a RL
 - \(L(r_1 . r_2) = L_1(r_1) . L_2(r_2) \) is a RL
 - \(L(r_1^\ast) = L_1(r_1)^\ast \) is a RL
regex examples (96)

- assume $\Sigma = \{0, 1\}$
 - $\emptyset, \varepsilon, 0, 1, 0+1, 00, 01, 10, 11, 000, 111,$
 - $L((0 + 1)^*)$
 - $L(0^*)$
 - $L((10)^*)$
 - $L(10^*)$
regex examples
Example 83: \((\text{revisit})\)

Example 84: \((\text{revisit})\)
Example 85: (revisit)
Example 97

Prove $L_{86} = L(r_{86})$ where

- $L_{86} = \{ \omega \in \{0,1\}^* | \omega \text{ starts and ends with different bits} \}$
- $r_{86} = 0. (0 + 1)^* . 1 + 1. (0 + 1)^* . 0$
Example 97
regex identities

- communitativity of union:
- associativity of union:
- associativity of concatenation:
- left distributivity:
- right distributivity:
- identity for union:
- identity for concatenation:
- annihilator for concatenation:
- idempotence of Kleene star:
NFA, DFA, regex
NFA, DFA, regex