The aim of this assignment is to give you some practice with various forms of induction. For each question below you will present a proof by induction. For full marks you will need to make it clear to the reader that the base case(s) is/are verified, that the inductive step follows for each element of the domain (typically the natural numbers), where the inductive hypothesis is used and that it is used in a valid case.

Your assignment must be typed to produce a PDF document (hand-written submissions are not acceptable). You may work on the assignment in groups of 1, 2, or 3, and submit a single assignment for the entire group on MarkUs.

1. Consider the Fibonacci-esque function g:

\[
g(n) = \begin{cases}
1, & \text{if } n = 0 \\
3, & \text{if } n = 1 \\
g(n-2) + g(n-1) & \text{if } n > 1
\end{cases}
\]

Use complete induction to prove that if n is a natural number greater than 1, then $2^{n/2} \leq g(n) \leq 2^n$.

You may not derive or use a closed-form for $g(n)$ in your proof.

Sample solution: Proof, using complete induction.

Inductive step: Let n be a typical natural number greater than 1 and assume $H(n)$: Every natural number $i \in \{2, \ldots, n-1\}$ satisfies $2^{i/2} \leq g(i) \leq 2^i$.

Show that inductive conclusion follows: We'll derive $C(n)$: $2^{n/2} \leq g(n) \leq 2^n$.

Base cases: $1 < n < 4$: $g(2) = 4$ and $g(3) = 7$ # by the definition of $g(2)$ and $g(3)$.

\[
2^{2/2} = 2 \leq 4 = g(2) \leq 4 = 2^2 \quad \text{and} \quad 2^{3/2} = 2\sqrt{2} \leq 7 = g(3) \leq 8 = 2^3
\]

$C(2)$ and $C(3)$ follow from our assumptions in this case.

Case $n \geq 4$: By assumptions $H(n-2)$ and $H(n-1)$ # $n \geq 4$ implies $2 \leq n - 2, n - 1 < n$:

\[
2^{(n-2)/2} \leq g(n-2) \leq 2^{n-2} \quad \text{and} \quad 2^{(n-1)/2} \leq g(n-1) \leq 2^{n-1}.
\]

Substituting these inequalities into the definition of $g(n)$ # by definition of $g(n), n \geq 4 > 0$:

\[
g(n) = g(n-2) + g(n-1) \geq 2^{(n-2)/2} + 2^{(n-1)/2} = (1 + \sqrt{2})2^{(n-2)/2} \geq 2 \times 2^{(n-2)/2} = 2^{n/2}
\]

\[
g(n) = g(n-2) + g(n-1) \leq 2^{n-2} + 2^{n-1} = (1 + 2)2^{n-2} \leq 2^2 \times 2^{n-2} = 2^n
\]

$C(n)$ follows from our assumptions in this case.

In all cases $H(n)$ implies $C(n)$.
2. Suppose \(B \) is a set of binary strings where each binary string is of length \(n \). \(n \) is positive (greater than 0), and no two strings in \(B \) differ in fewer than 2 positions. Use simple induction to prove that \(B \) has no more than \(2^{n-1} \) elements.

Sample solution: Proof, using simple induction.

verify base: There are two binary strings of length 1: "0" and "1", and they differ from each other in exactly one position (i.e. fewer than 2). That means that the only sets of binary strings of length 1 that contain no pairs that differ in fewer than 2 positions are \{"1"\}, \{"0"\}, and \{\}, which each have no more than 1 = 2\(^{1-1}\) elements, verifying the claim in this case.

inductive step: Let \(n \) be a typical natural number greater than 0. Assume \(H(n) \): any set of binary strings of length \(n \) containing no pairs that differ in fewer than 2 positions must have no more than \(2^{n-1} \) elements.

derive conclusion \(C(n) \): We must show that from \(H(n) \) follows \(C(n) \): any set of binary strings of length \(n + 1 \) containing no pairs that differ in fewer than 2 positions must have no more than \(2^n \) strings.

Let \(B \) be an arbitrary set of binary strings of length \(n + 1 \) that contains no pairs that differ in fewer than 2 positions.

Let \(B_1 \) be the subset of \(B \) consisting of those elements with 1 in the first position, and \(B_2 \) be the subset of \(B \) consisting of those elements of \(B \) with 0 in the first position. \(B_1 \) and \(B_2 \) partition \(B \), since every element of \(B \) has either a 1 or a 0 in the first position, and no element of \(B \) has both a 1 and a 0 in the first position.

From \(B_1 \) construct \(B'_1 \), consisting of the strings of \(B_1 \) with the leading 1 removed. Similarly, from \(B_2 \) construct \(B'_2 \), consisting of the strings of \(B_2 \) with the leading 0 removed.

Sets \(B'_1 \) and \(B'_2 \) contain strings of length \(n \), and contain no pairs that differ in fewer than 2 positions, since removing the leading 1s or 0s cannot change the number of positions in which elements differ. By assumption \(H(n) \), both \(B'_1 \) and \(B'_2 \) have no more than \(2^{n-1} \) elements each.

Elements of \(B_1 \) are in 1-1 correspondence with those of \(B'_1 \), since you can transform one into the other by prepending a leading 1, or removing a leading 1. Similarly elements of \(B_2 \) are in 1-1 correspondence with those of \(B'_2 \). \(|B_1| = |B'_1| \) and \(|B_2| = |B'_2|\), since they are in 1-1 correspondence.

\(|B| = |B_1| + |B_2| \leq 2^{n-1} + 2^{n-1} = 2^n\), since \(B_1 \) and \(B_2 \) partition \(B \). This is what \(C(n) \) claims.

3. Define \(T \) as the smallest set of strings such that:

(a) "b" \(\in T \)

(b) If \(t_1, t_2 \in T \), then \(t_1 + "ene" + t_2 \in T \), where the + operator is string concatenation.

Use structural induction to prove that if \(t \in T \) has \(n "b" \) characters, then \(t \) has \(2n - 2 "e" \) characters.

Sample solution: Proof, using structural induction.

verify basis: "b" \(\in T \# \) from definition. "b" has 1 character "b" and \(2(1) - 2 = 0 "e" \) characters. This verifies the claim for the basis.

inductive step: Let \(t_1, t_2 \in T \) and assume \(H(\{t_1, t_2\}) \): If \(t_1 \) has \(n_1 "b" \) characters and \(t_2 \) has \(n_2 "b" \) characters, then \(t_1 \) has \(2n_1 - 2 "e" \) characters and \(t_2 \) has \(2n_2 - 2 "e" \) characters.

show that inductive conclusion follows from assumptions: We'll derive \(C(t_1 + "ene" + t_2) \): If \(t_1 + "ene" + t_2 \) has \(n_{1,2} "b" \) characters, then it has \(2n_{1,2} - 2 "e" \) characters.

\(t_1 + "ene" + t_2 \in T \# \) by definition of \(T \), where + is string concatenation.
Let n_1, m_1 be the number of "b" (respectively "e") characters in t_1, and n_2, m_2 be the number of "b" (respectively "e") characters in t_2. $t_1 + "ene" + t_2$ has $n_1 + n_2$ "b" characters # Concatenating "ene" doesn't increase the number of "b" characters.

Let $n_{1,2}$ be the number of "b" characters in $t_1 + "ene" + t_2$. Then $n_{1,2} = n_1 + n_2$ # since no "b" characters are added by concatenating "ene".

$t_1 + "ene" + t_2$ has $2n_1 - 2 + 2n_2 - 2 + 2$ "e" characters # by assumptions $H(t_1), H(t_2)$, and two "e" characters in "ene".

Summing up $t_1 + "ene" + t_2$ has $2n_1 - 2 + 2n_2 - 2 + 2(n_1 + n_2) - 2 + 2 = 2n_1 + 2n_2 - 2$ "e" characters. Conclusion $C(t_1 + "ene" + t_2)$ follows in this case.

4. On page 79 of the Course Notes the quantity $\phi = (1 + \sqrt{5})/2$ is shown to be closely related to the Fibonacci function. You may assume that $1.61803 < \phi < 1.61804$. Complete the steps below to show that ϕ is irrational.

(a) Show that $\phi(\phi - 1) = 1$.

Sample solution: Substituting the expression for ϕ:

$$\phi(\phi - 1) = \left(\frac{1 + \sqrt{5}}{2}\right) \left(\frac{\sqrt{5} - 1}{2}\right) = \frac{4}{4} = 1$$

(b) Rewrite the equation in the previous step so that you have ϕ on the left-hand side, and on the right-hand side a fraction whose numerator and denominator are expressions that may only have integers, + or -, and ϕ. There are two different fractions, corresponding to the two different factors in the original equation's left-hand side. Keep both fractions around for future consideration.

Sample solution: I can choose to divide 1 by either ϕ or $\phi - 1$, yielding:

$$\phi = \frac{1}{\phi - 1} \quad \phi = \frac{1 + \phi}{\phi}$$

(c) Assume, for a moment, that ϕ is the ratio of two natural numbers. Let $m, n \in \mathbb{N}$ such that $\phi = n/m$. Re-write the right-hand side of both equations in the previous step so that you end up with fractions whose numerators and denominators are expressions that may only have integers, + or -, m and n.

Sample solution: Substitute n/m for ϕ on the right-hand side, and then simplify:

$$\phi = \frac{1}{\phi - 1} \quad \Rightarrow \quad \phi = \frac{m}{n - m} \quad \phi = \frac{1 + \phi}{\phi} \quad \Rightarrow \quad \frac{m + n}{n}$$

(d) Use your assumption from the previous part to construct a non-empty subset of the natural numbers that contains m. Use the Principle of Well-Ordering, plus one of the two expressions for ϕ from the previous step to derive a contradiction.

Sample solution: Let $F \subseteq \mathbb{N}$ be defined by:

$$F = \{m' \in \mathbb{N} \mid \exists n' \in \mathbb{N}, \phi = n'/m'\}.$$

By assumption in (c), F is non-empty, since it has at least one member, m. By PWO F has a smallest element, let it be m_0, with its corresponding n_0 so that $m_0, n_0 \in \mathbb{N}$ and $\phi = n_0/m_0$.
Rewriting the equation for ϕ and using the assumption $1.61803 < \phi < 1.61804$ yields:

$$\phi = \frac{n_0}{m_0}$$

$$\phi m_0 = n_0 \quad \# \text{multiply both sides by } m_0$$

$$m_0 < n_0 < 2m_0 \quad \# \text{multiply } 1.61803 < \phi < 1.61804 \text{ by } m$$

$$0 < n_0 - m_0 < m_0 \quad \# \text{subtract } m_0 \text{ from both inequalities.}$$

$n_0 - m_0 \in \mathbb{N} \quad \# \text{integers closed under } -$ and difference is non-negative.

$n_0 - m_0 \in F$, since $\phi = n_0/m_0 = m_0/(n_0 - m_0)$ and $n_0 - m_0 < m_0$.

Contradiction $\rightarrow \leftarrow$. m_0 is the smallest element of F, by construction.

(e) Combine your assumption and contradiction from the previous step into a proof that ϕ cannot be the ratio of two natural numbers. Extend this to a proof that ϕ is irrational.

Sample solution: Proof (by contradiction) that ϕ is irrational.

Assume, for the sake of contradiction, that ϕ is rational.

Let $z_1, z_2 \in \mathbb{Z}, \phi = z_1/z_2 \quad \# \text{by definition of } \phi \text{ is rational}$

Let $n, m \in \mathbb{N}, m/n = \phi. \quad \# \text{Since } \phi = z_1/z_2 > 0 \text{ the numerator and denominator have the same sign. If } z_1, z_2 > 0, \text{ let } n = z_1, m = z_2. \text{ Otherwise, if } z_1, z_2 < 0, \text{ let } n = -z_1, m = -z_2.$

Contradiction $\rightarrow \leftarrow$. From the previous part, there are no natural numbers m, n such that $\phi = m/n$.

ϕ is irrational, since assuming otherwise leads to a contradiction.

5. Consider the function f, where $3 \div 2 = 1$ (integer division, like $3\div2$ in Python):

$$f(n) = \begin{cases} 1 & \text{if } n = 0 \\ f^2(n \div 3) + 3f(n \div 3) & \text{if } n > 0 \end{cases}$$

Use complete induction to prove that for every natural number n greater than 2, $f(n)$ is a multiple of 7. NB: Think carefully about which natural numbers you are justified in using the inductive hypothesis for.

Sample solution: Proof by complete induction.

Inductive step: Let n be a typical natural number greater than 2, and assume $H(n):$ that $f(i)$ is a multiple of 7 for natural numbers $2 < i < n$.

Show that inductive conclusion follows: We’ll derive $C(n): f(n)$ is a multiple of 7.

Base case $2 < n < 6$: $n > 0$, so by the definition of $f(n)$:

$$f(n) = f^2(n \div 3) + 3f(n \div 3) = f^2(1) + 3f(1) = 28 \quad \# f(1) = 4 \text{ from definition}$$

28 is a multiple of 7, so $C(n)$ follows in this case.

Base case $6 \leq n < 9$: $n > 0$, so by the definition of $f(n)$:

$$f(n) = f^2(n \div 3) + 3f(n \div 3) = f^2(2) + 3f(2) = 28 \quad \# f(2) = 4 \text{ from definition}$$

28 is a multiple of 7, so $C(n)$ follows in this case.

Case $n \geq 9$: $n > n \div 3 > 2$, so by assumption $H(n \div 3)$ we know that $f(n \div 3)$ is a multiple of 7.

Let $k \in \mathbb{N}$ be a natural number such that $f(n \div 3) = 7k$.

$$f(n) = f^2(n \div 3) + 3f(n \div 3) = 49k^2 + 21k = 7(7k^2 + 3k)$$

$7(7k^2 + 3k)$ is a multiple of 7, so the conclusion $C(n)$ is verified in this case.