
CSC 209H1 S 2018

Question 1. [5 marks]

Assume you have a terminal open, and the current working directory contains a C program file called
wizard.c and a text file called potion.txt.

Part (a) [1 mark]

The following command is used to compile wizard.c into an executable:
gcc -Wall -o magic -g -std=gnu99 wizard.c

Write a shell command to execute the executable file produced by the statement above with input redirected
so the program reads from potion.txt rather than from standard input.

./magic < potion.txt

OR

magic < potion.txt

Part (b) [2 marks]

Now, a header file named wizard.h is added to the current working directory and wizard.c is revised to
include that header file.

Write a Makefile with one rule so that when you type make wizard, the executable program will be created
(or re-created) only if one or both of the files wizard.c or wizard.h have been modified. Note that the
program should be compiled with the -Wall and -g flags.

wizard: wizard.c wizard.h

gcc -Wall -o wizard -g wizard.c

OR

wizard: wizard.c wizard.h

gcc -Wall -o magic -g wizard.c

(including std=gnu99 was ok but not required)

Part (c) [1 mark]

The following command is used to set the permissions of potion.txt:
chmod 731 potion.txt

Check the boxes to indicate the file permissions of potion.txt after the command above has been executed.

user: X read X write X execute

group: read X write X execute

other: read write X execute

Part (d) [1 mark]

In the box, print the number of bytes that will be written to the file by this code fragment.

int i = 82;

fprintf(fp, "%d\n", i); 3 OR sizeof(char) * 3

Page 1 of 4

CSC 209H1 S 2018

Question 2. [6 marks]

For each code fragment below, if the code will not compile or will generate a warning when compiled with
the -Wall flag, check COMPILE ERROR and explain why. If the code will compile, but is not guaranteed to
run without an error, check RUN-TIME ERROR and explain why. Otherwise, check NO ERROR and show what
is printed. The first one is done for you.
Code Fragment ERROR Output or explanation for error

int y = 2; �XNO ERROR 2 2

int x = y; � COMPILE ERROR

printf("%d %d", x, y); � RUN-TIME ERROR

char *name = "Me"; � NO ERROR

printf("%s\n", name); � COMPILE ERROR

free(name); �XRUN-TIME ERROR name is on the stack and cannot be freed

char *animal = "cat"; � NO ERROR

animal[0] = ’r’; � COMPILE ERROR

printf("%s", animal); �XRUN-TIME ERROR cannot mutate a string literal

char s[] = "RaCecAr"; �XNO ERROR rAcecAr
char *p = s; � COMPILE ERROR

int q = 6; � RUN-TIME ERROR

while (p <= &s[q]) {

if (*p != s[q]) {

*p = s[q];

}

p++;

q--;

}

printf("%s", s);

char *w = malloc(3 * sizeof(char)); � NO ERROR

strcpy(w, "AB"); �XCOMPILE ERROR "m + 1" should be "*(m + 1)"

char *m[2]; � RUN-TIME ERROR

m[0] = w;

m + 1 = w + 1;

printf("%s, %s", *m, *(m + 1));

char food[6]; � NO ERROR

char *fruit = "banana"; �XCOMPILE ERROR incompatible types (char[6] vs. char *)

food = fruit; � RUN-TIME ERROR

printf("%s", food);

char s[10] = "computer"; � NO ERROR

s[6] = ’\0’; �XCOMPILE ERROR comput

printf("%s", s); � RUN-TIME ERROR

Page 2 of 4

CSC 209H1 S 2018

Question 3. [5 marks]

Write the function count occurrences according to its description below. Complete the main function.

Notice that it counts overlapping occurences. For example, given "ababa" and "aba" for the first two
arguments, the function should update the memory pointed at by result to 2.

You may not use strstr(), nor any other string library function that would find a substring for you.

/* Find the number of times substr appears in str (including overlapping occurrences) and

* set the memory pointed at by result to that number. If str and substr are identical,

* set the memory pointed at by result to 1. */

void count_occurrences(char *str, char *substr, int *result) {

int last = strlen(str) - strlen(substr) + 1;

int count = 0;

int flag;

for (int i = 0; i < last; i++) {

flag = 1;

for (int j = i; j < (i + strlen(substr)); j++) {

if (str[j] != substr[j-i]) {

flag = 0;

break;

}

}

if (flag == 1) {

count++;

}

}

*result = count;

}

int main() {

int res;

// Call count_occurrences on "ababa" to find "aba" and set res.

count_occurrences("ababa", "aba", &res);

printf("aba occurred %d times in ababa\n", res);

return 0;

}

Page 3 of 4

CSC 209H1 S 2018

Question 4. [9 marks]

Complete the following program according to the instructions in the comments. Assume that all system
calls succeed and that the arguments are of the specified format. Only allocate the space you need.

struct flight {

char *code;

int seats_available;

};

/* Return a pointer to a new struct flight with its code and seats_available

* initialized to the data given in arg. arg will be a flight code (e.g., AC1123)

* followed by a colon (:) and the number of seats on that flight (e.g., 100).

* Once a flight is created, its code must refer to a dynamically-allocated string. */

struct flight *create_flight(char *arg) {

struct flight *new_flight = malloc(sizeof(struct flight));

// argument format: AC1123:24

char *tmp = strchr(arg, ’:’);

int seats = strtol(tmp + 1, NULL, 10);

int size = strlen(arg) - strlen(tmp) + 1;

new_flight->code = malloc(sizeof(char) * size);

strncpy(new_flight->code, arg, size - 1);

new_flight->code[size] = ’\0’;

new_flight->seats_available = seats;

return new_flight;

}

/* If there are enough seats available on f, book num_seats; Otherwise do nothing. */

void book_seat(struct flight* f, int num_seats) {

if (f->seats_available >= num_seats) {

f->seats_available -= num_seats;

}

}

int main(int argc, char **argv) {

// argv[1] represents a flight in the format code:seats (e.g., AC1123:100, WSG324:24)

struct flight *my_flight = create_flight(argv[1]);

book_seat(my_flight, 2);

// Free memory

free(my_flight->code);

free(my_flight);

}

Page 4 of 4 End of Solutions

