
PLEA
SE

H
A
N
D
IN

UNIVERSITY OF TORONTO
Faculty of Arts and Science

St. George Campus

APRIL 2017 EXAMINATIONS

CSC209H1S
Instructor:
Karen Reid

Duration: 3 hours

PL
EA
SE

H
A
N
D
IN

Examination Aids: One double-sided 8.5x11 sheet of paper. No electronic aids.

Student Number:

Last (Family) Name(s):

First (Given) Name(s):

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,

and read the instructions below carefully.)

This final examination consists of 9 questions on 20 pages. A mark of
at least 31 out of 79 on this exam is required to pass this course. When
you receive the signal to start, please make sure that your copy of the
examination is complete.
You are not required to add any #include lines, and unless otherwise
specified, you may assume a reasonable maximum for character arrays
or other structures. For shell programs, you do not need to include
the #!/bin/sh. Error checking is not necessary unless it is required for
correctness.
Answers that contain a mixture of correct and incorrect or irrelevant
statements will not receive full marks.

Marking Guide

1: /12

2: / 6

3: / 6

4: / 8

5: / 8

6: / 5

7: /15

8: / 9

9: /10

TOTAL: /79Good Luck!

Page 1

CSC 209H1S Final Examination APRIL 2017

Question 1. [12 marks]

Part (a) [8 marks] Circle the correct answer for the statements below.

TRUE FALSE
You can send a signal to an unrelated process. (An unrelated process is
neither an ancestor nor descendant.)

TRUE FALSE
Given the following call to accept, the socket sockfd should be closed as
soon as a new client has been accepted because it is no longer needed.

int accept(int sockfd, struct sockaddr *client, socklen_t *addrlen);

TRUE FALSE The code below has a memory leak.

void helper(int *arr, int size) {

arr = malloc(sizeof(int) * size);

}

TRUE FALSE All character arrays must be null-terminated.

TRUE FALSE
If a process tries to read from an open pipe before there is any data in the
pipe, it could get an error.

TRUE FALSE Open file descriptors are inherited across a fork call but not across an exec

call.

TRUE FALSE
The reason we don’t see the shell prompt appear when running a program
in the foreground is that the program we are running in the foreground is
a child of the shell, and the shell has called wait.

TRUE FALSE
If we have two files that are hard links for the same file, they cannot have
different permissions or a diferent owner.

Part (b) [2 marks]

Consider the following code fragment.

int age[5] = {4, 70, 52, 18, 16};

int *p = &age[2];

Check the boxes of the statements below that are true after the code fragment has run.

The following is an illegal statement: age[0] = p[0];

The values in the array after the execution of the statement age[0] = p[0]; are {52, 70, 52, 18, 16}

The expression *(a+3)could lead to a segmentation fault

√
The expression *(p+3) could lead to a segmentation fault

Page 2 of 20

APRIL 2017 Final Examination CSC 209H1S

Part (c) [2 marks]

Given the following code snippet, check the box for line or lines that would not lead to any problems with the code
regardless of the value of argv[1].

if(argc < 2) {

return 1;

}

char name[30];

// missing code that modifies name such that it is a valid string

strncat(name, argv[1], 30);

strncat(name, argv[1], strlen(argv[1]) + 1);

strncat(name, argv[1], 30-strlen(name) + 1);

√
strncat(name, argv[1], 30-strlen(name) - 1);

strncat(name, argv[1], strlen(name) + 1);

Page 3 of 20

CSC 209H1S Final Examination APRIL 2017

Question 2. [6 marks]

Part (a) [2 marks]

In the two’s complement representation of a negative number, the highest bit has the value 1 for negative numbers
and 0 for positive numbers. For example, in an 8-bit number 1111 1001 is the two’s complement representation for
-7, while 0000 0111 is the two’s complement representation for 7.

status is an int that holds a two’s complement number as the last 8 bits. Fill in the conditional expression below
so that the if statement executes correctly. Note that you only need the information above to solve the problem.

unsigned int status;

// missing code to assigns to status a two’s complement value in the lowest 8 bits

if(___) {

printf("The value in num is negative\n");

} else {

printf("The value in num is positive\n");

}

Part (b) [4 marks]

Write a shell program that takes a filename as an argument and prints the full path to each location in the $PATH

variable where the file is found. You may not use any programs in your solution (such as where, ls, find etc) other
than tr which is explained below.

Suppose the program is called mywhere, then here is an example.

reid@wolf$./mywhere python

/usr/local/bin/python

/usr/bin/python

Recall that $PATH is a colon-separated list of absolute paths. To turn it into a space-separated list, we use a program
called tr that reads from standard input and translates all characters of its first argument to its second argument.

For example the following line will output “/usr/bin /sbin /bin”

echo /usr/bin:/sbin:/bin | tr : " "

Step 1: Write one line that will assign to a shell variable dirs the result of using tr on $PATH.

Step 2: Using the list in dirs complete the program described above.

Page 4 of 20

APRIL 2017 Final Examination CSC 209H1S

Question 3. [6 marks]

Below is a simple C program. In the space below the program, draw a complete memory diagram showing all of the
memory allocated immediately before get ext returns. Clearly distinguish between the different sections of memory
(stack, heap, global), as well as different stack frames. You must show where each variable is stored, but make sure
it’s clear in your diagram what is a variable name vs. the value stored for that variable. You may show a pointer
value by drawing an arrow to the location in memory with that address, or may make up address values.

char *get_ext(char *filename){

char *ptr = strchr(filename, ’.’);

char *ext = malloc(strlen(ptr+1) + 1);

strncpy(ext, ptr+1, strlen(ptr+1)+1);

// Draw memory at this point in the program.

return ext;

}

int main() {

char name[8] = "prog.py";

char *e = get_ext(name);

printf("%s %s\n", name, e);

return 0;

}

Page 5 of 20

CSC 209H1S Final Examination APRIL 2017

Question 4. [8 marks]

Each of the code fragments below has a problem. Explain what is wrong, and then fix the code by printing neatly
on the code itself. Note that failing to check for errors on system calls is not the problem.

Part (a) [1 mark]

if(argc > 2) {

char *name = malloc(strlen(argv[2]) + 1);

name = argv[2];

}

Part (b) [1 mark]

if(argc > 2) {

char s[30] = argv[1];

s[0] = ’A’;

}

Part (c) [1 mark]

int *firstfive(int *A) {

int vals[5];

for(int i = 0; i < 5; i++) {

vals[i] = A[i];

}

return vals;

}

Part (d) [2 marks]

struct point{

int x;

int y;

};

//Return the sum of the coordinates of p and negate their values

int sum_and_flip(struct point p) {

int sum = p.x + p.y;

p.x = p.x * -1;

p.y = p.y * -1;

return sum;

}

Page 6 of 20

APRIL 2017 Final Examination CSC 209H1S

Part (e) [1 mark]

int status;

if(wait(&status) != -1) {

printf("status is %d", WEXITSTATUS(status));

}

Part (f) [2 marks] Note that failing to check for errors is not the problem with the code below.

int main() {

char buf[8];

int fd[2];

pipe(fd);

int r = fork();

if(r == 0) {

close(fd[1]);

while(read(fd[0], buf, 8) == 8) {

printf("buf=%s\n", buf);

}

exit(0);

} else {

close(fd[0]);

strcpy(buf, "Hi ");

write(fd[1], buf, 8);

wait(NULL);

exit(0);

}

return 1;

}

Page 7 of 20

CSC 209H1S Final Examination APRIL 2017

Question 5. [8 marks]

Part (a) [6 marks]

The program below creates a directory from the first argument to main. Using only the lines of code provided in
the table on the right, fill in the code in the table on the left so that when the program receives the SIGINT signal,
the permissions of the directory are changed to 0700 and prints a message notifying the user that the permissions
have changed before the program terminates.

label code line

— int main(int argc, char **argv) {

— mkdir(argv[1], 0400);

z printf("Directory created\n");

— // The rest of the program is omitted.

— // No code will be added below this comment.

Use the labels in the table below to clearly
identify the lines you have chosen. Note
that some incorrect lines have been added
as options, and that extra slots have been
added to the table on the left.
An exmple has been given for you, using
line “z”.

label code line
a chmod(path, 0700);

b exit(0);

c exit(1);

d printf("Changed %s\n", path);

e char *path;

f path = NULL;

g path = argv[1];

h path = malloc(strlen(argv[1])+1);

i sa.sa_flags = 0;

k sa.sa_handler = &fixperm;

m sa.sa_handler = fixperm;

n sigaction(SIGINT, &sa, NULL);

o sigaction(SIGINT, sa, NULL);

p sigemptyset(&sa.sa_mask);

s struct sigaction sa;

t int fixperm(char *path) {

u int fixperm(int code) {

w void fixperm(char *path) {

x void fixperm(int code) {

y }

z printf("Directory created\n");

Page 8 of 20

APRIL 2017 Final Examination CSC 209H1S

Part (b) [2 marks]

Add the error checking for the call to chmod(path, 0700) so that it prints an error message and terminates the
program with a value of 1.

Page 9 of 20

CSC 209H1S Final Examination APRIL 2017

Question 6. [5 marks]

Consider the following program that compiles and runs to completion without error.

int main() {

int r = fork();

if(r == 0) {

printf("First\n");

r = fork();

if(r == 0) {

printf("Second\n");

exit(0);

} else {

printf("Third\n");

}

}

printf("Fourth\n");

if(wait(NULL) != -1) {

printf("Fifth\n");

}

exit(0);

}

Part (a) [1 mark] How many processes are run including the process that calls main?

Part (b) [4 marks] Check the boxes for the statements below that are true.

“First” must be displayed first

“Second” must be displayed after “First” (not necessarily immediately after)

“Fourth” is displayed three times

“Second” could be displayed after “Fourth” (not necessarily immediately after)

“Second” and “Third” could be displayed in either order

The process that prints “Second” also prints “First”

The second last line displayed must be “Fifth”

The last line displayed must be “Fifth”

Page 10 of 20

APRIL 2017 Final Examination CSC 209H1S

Question 7. [15 marks]

The goal of this question is to write a program called redir that allows standard input and/or standard output to
be redirected from or to a file.

Command line arguments are specified below. Square brackets mean that the argument is optional.

redir [-i infile] [-o outfile] prog [arg1 ...]

Examples:

redir ls No redirection. The program ls is run.
redir -i names sort The program sort is run and input is redirected from the file

called names

redir -o listing.txt ls -l The program ls is run with the argument -l, and the output
is redirected to the file listing.txt

redir -i data.csv -o names cut -f 1 -d "," The program cut is run with the arguments -f 1 -d ",". In-
put is redirected from data.csv, and output is redirected to
the file names

redir -o names -i data.csv cut -f 1 -d "," (Same as previous.)

Part (a) [2 marks]

Rewrite the first four examples as shell commands. In other words, how would you achieve the same results without
using the program redir?

redir ls

redir -i names sort

redir -o listing.txt ls -l

redir -i data.csv -o names cut -f 1 -d ","

Page 11 of 20

CSC 209H1S Final Examination APRIL 2017

Part (b) [7 marks]

Complete the function below that parses the command line arguments. It returns the index into argv that holds the
name of program to run, and sets the input and output file names as the last two parameters (where appropriate)
so that they may be used in the main program when read options returns. Do not use getopt.

Assume all arguments are passed correctly, so you don’t need to consider too few arguments or other incorrect
options.

int read_options(int argc, char **argv, _________________________________,

_________________________________) {

/* Fill in the initialization for infile and outfile, and the arguments to read_options

*

* infile is set to the name of the input file to redirect from if the

* -i option was used, and is set to NULL if input is not redirected.

* outfile is set to the name of the output file to redirect to if the

* -o option was used, and is set to NULL if output is not redirected.

* index is set to the index into the argv array that holds the name of the

* program to run.

*/

int main(int argc, char **argv) {

char *infile = ___;

char *outfile = __;

int index = read_options(argc, argv, ___________________, ____________________);

Page 12 of 20

APRIL 2017 Final Examination CSC 209H1S

Part (c) [6 marks]

Given that the command line arguments have been parsed correctly, so that the variables from the the previous
question have their correct values, complete the program as specified.

Page 13 of 20

CSC 209H1S Final Examination APRIL 2017

Question 8. [9 marks]

Suppose every machine in our labs is running a load monitoring server that is listening for connections on port 33333.
When a client connects to the server, the server will send an integer (in network byte order) representing the load
on the machine, and will then close the socket.

Your task is to complete the code below for a client that will connect to each of the lab machines in turn and store
the load values in an array. The host ip addresses are stored in a file with one address per line with unix line
endings(’\n’). Example:

128.100.32.2

128.100.32.23

128.100.32.37

Assume there will never be more than MAXHOSTS IP addresses in the file.

#define MAXNAME 64

#define MAXHOSTS 30

struct machine {

char *host_ip[MAXNAME]; // The ip address read from the file

int load;

};

int main(int argc, char* argv[]) {

struct machine lab[MAXHOSTS];

Part (a) [4 marks]

Populate the host ip fields in the array lab with the IP addresses from a file called “hosts”. Any unused array
elements should have the host_ip field set to the empty string. Remember to remove newline character from the
input.

Page 14 of 20

APRIL 2017 Final Examination CSC 209H1S

Part (b) [5 marks]

Now, for each host IP address in the lab array, create a socket connection to the server, store the integer (in the
correct format) received from the server in the load field, and close the socket.

Some of the setup is done for you below. Recall that inet pton can be used to convert the string form of the host
IP address into the form needed by the sin addr field of the struct sockaddr in.

int soc;

struct sockaddr_in peer;

peer.sin_family = PF_INET;

peer.sin_port = htons(PORT);

printf("PORT = %d\n", PORT);

Page 15 of 20

CSC 209H1S Final Examination APRIL 2017

Question 9. [10 marks]

Consider the following parts of a server that will manage multiple clients. Note that error checking has been removed
for brevity and some parts of the program are missing. The questions below assume that the missing components
are correctly implemented.

struct client {

int fd;

char *name;

struct client *next;

};

static struct client *addclient(struct client *top, int fd, char *name) {

struct client *p = malloc(sizeof(struct client));

p->fd = fd;

p->name = malloc(strlen(name)+1);

strncpy(p->name, name, strlen(name)+1);

p->next = top;

top = p;

return top;

}

int main(int argc, char **argv) {

// Assume all variables are correctly declared and initialized

// The appropriate calls have been made to set up the socket.

FD_ZERO(&readset);

FD_SET(listenfd, &readset);

maxfd = listenfd;

while (1) {

n = select(maxfd + 1, &readset, NULL, NULL, NULL);

if (FD_ISSET(listenfd, &readset)){

clientfd = accept(listenfd, (struct sockaddr *)&q, &len);

char buffer[MAXNAME];

read(clientfd, buffer, MAXNAME);

printf("connection from %s\n", buffer);

head = addclient(head, clientfd, buffer);

}

// code to check each client that is ready to read follow

Page 16 of 20

APRIL 2017 Final Examination CSC 209H1S

Part (a) [4 marks]

When the server is run we notice that the program runs, but blocks forever in select even though new connections
are coming in and there is always more data ready to read from all connected clients. This is the result of two
problems in the code.

Explain the problem and fix it in the code above. (Lack of error checking is not the problem.)

Part (b) [3 marks]

Now that the problem in the previous question is fixed, the server correctly handles multiple connections as long as
the clients don’t experience any delays. But sometimes, when one client is slow, it seems to slow everything down.
Explain the problem and how to fix it. (You don’t need to write the code.)

Part (c) [3 marks]

Complete the function below to free the client list:

void free_list(struct client *top) {

Page 17 of 20

CSC 209H1S Final Examination APRIL 2017

This page can be used if you need additional space for your answers.

Total Marks = 79

Page 18 of 20

APRIL 2017 Final Examination CSC 209H1S

C function prototypes and structs:

int accept(int sock, struct sockaddr *addr, int *addrlen)

int bind(int sock, struct sockaddr *addr, int addrlen)

int chmod(const char *path, mode t mode)

int close(int fd)

int closedir(DIR *dir)

int connect(int sock, struct sockaddr *addr, int addrlen)

int dup2(int oldfd, int newfd)

int execlp(const char *file, char *argv0, ..., (char *)0)

int execvp(const char *file, char *argv[])

int fclose(FILE *stream)

int FD ISSET(int fd, fd set *fds)

void FD SET(int fd, fd set *fds)

void FD CLR(int fd, fd set *fds)

void FD ZERO(fd set *fds)

char *fgets(char *s, int n, FILE *stream)

int fileno(FILE *stream)

pid t fork(void)

FILE *fopen(const char *file, const char *mode)

size t fread(void *ptr, size t size, size t nmemb, FILE *stream);

int fseek(FILE *stream, long offset, int whence);

/* SEEK_SET, SEEK_CUR, or SEEK_END*/

size t fwrite(const void *ptr, size t size, size t nmemb, FILE *stream);

unsigned long int htonl(unsigned long int hostlong) /* 4 bytes */

unsigned short int htons(unsigned short int hostshort) /* 2 bytes */

char *index(const char *s, int c)

int inet pton(int af, const char *src, void *dst);

/*af=PF_INET; pass in address of sin_addr field as dst */

int kill(int pid, int signo)

int listen(int sock, int n)

int mkdir(const char *pathname, mode t mode)

unsigned long int ntohl(unsigned long int netlong)

unsigned short int ntohs(unsigned short int netshort)

int open(const char *path, int oflag)

/* oflag is O_WRONLY | O_CREAT for write and O_RDONLY for read */

DIR *opendir(const char *name)

int pclose(FILE *stream)

int pipe(int filedes[2])

FILE *popen(char *cmdstr, char *mode)

ssize t read(int d, void *buf, size t nbytes);

struct dirent *readdir(DIR *dir)

int select(int maxfdp1, fd set *readfds, fd set *writefds, fd set *exceptfds, struct timeval *timeout)

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact)

/* actions include SIG_DFL and SIG_IGN */

unsigned int sleep(unsigned int seconds)

int socket(int family, int type, int protocol) /* family=PF INET, type=SOCK STREAM, protocol=0 */

int sprintf(char *s, const char *format, ...)

int stat(const char *file name, struct stat *buf)

char *strchr(const char *s, int c)

size t strlen(const char *s)

char *strncat(char *dest, const char *src, size t n)

int strncmp(const char *s1, const char *s2, size t n)

char *strncpy(char *dest, const char *src, size t n)

char *strrchr(const char *s, int c)

int wait(int *status)

int waitpid(int pid, int *stat, int options) /* options = 0 or WNOHANG*/

ssize t write(int d, const void *buf, size t nbytes);

Page 19 of 20

CSC 209H1S Final Examination APRIL 2017

WIFEXITED(status) WEXITSTATUS(status)

WIFSIGNALED(status) WTERMSIG(status)

WIFSTOPPED(status) WSTOPSIG(status)

Useful structs

struct sigaction {
void (*sa handler)(int);

sigset t sa mask;

int sa flags;

}
struct hostent {

char *h name; // name of host

char **h aliases; // alias list

int h addrtype; // host address type

int h length; // length of address

char *h addr; // address

}
struct sockaddr in {

sa family t sin family;

unsigned short int sin port;

struct in addr sin addr;

unsigned char pad[8]; /*Unused*/

}

struct stat {
dev t st dev; /* ID of device containing file */

ino t st ino; /* inode number */

mode t st mode; /* protection */

nlink t st nlink; /* number of hard links */

uid t st uid; /* user ID of owner */

gid t st gid; /* group ID of owner */

dev t st rdev; /* device ID (if special file) */

off t st size; /* total size, in bytes */

blksize t st blksize; /* blocksize for file system I/O */

blkcnt t st blocks; /* number of 512B blocks allocated */

time t st atime; /* time of last access */

time t st mtime; /* time of last modification */

time t st ctime; /* time of last status change */

};

Shell comparison operators

Shell Description

-d filename Exists as a directory

-f filename Exists as a regular file.

-r filename Exists as a readable file

-w filename Exists as a writable file.

-x filename Exists as an executable file.

-z string True if empty string

str1 = str2 True if str1 equals str2

str1 != str2 True if str1 not equal to str2

int1 -eq int2 True if int1 equals int2

-ne, -gt, -lt, -le For numbers

!=, >, >=, <, <= For strings

-a, -o And, or.

Useful shell commands:

cat, cut, echo, ls, read, sort, uniq, wc

ps aux - prints the list of currently running processes

grep (returns 0 if match is found, 1 if no match was found, and 2 if there was an error)

grep -v displays lines that do not match

diff (returns 0 if the files are the same, and 1 if the files differ)

$0 Script name

$# Number of positional parameters

$* List of all positional parameters

$? Exit value of previously executed command

Page 20 of 20 End of Examination

