Communication

- **Piazza**
 - Use first for non-personal communication
 - Informative subject lines help
- **Email:** csc20918s@cs.toronto.edu
 - Email is a formal method of communication:
 - Use proper English.
 - State your question clearly, with enough context.
 - Sign it (Name and utorid are the most useful.)
- **Anonymous Feedback**
 - Link from the website
- **In person in Office Hours**
Inverted/Blended Classroom

• Preparation before class (videos & exercises)
• Hands-on Activities in class
 • Need to bring computers to class (or share)

Course Information

• Check the course syllabus on the course web page for
 – Office hours
 – Assignment schedule
• The course web page is the official source of announcements. (Piazza)
 http://www.teach.cs.toronto.edu/~csc209h/winter
• Make sure you have the prerequisites!
Marking Scheme

<table>
<thead>
<tr>
<th>type of work</th>
<th>probable topic</th>
<th>Weight</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Prep (11)</td>
<td></td>
<td>5%</td>
<td>Mondays 9:30am</td>
</tr>
<tr>
<td>Lab Exercises (10)</td>
<td></td>
<td>10%</td>
<td>Fridays 6:30pm</td>
</tr>
<tr>
<td>A1</td>
<td>Shell & Basic C</td>
<td>5%</td>
<td>Feb 1, 8:00pm</td>
</tr>
<tr>
<td>A2</td>
<td>More C (pointers, files)</td>
<td>10%</td>
<td>Feb 15, 8:00pm</td>
</tr>
<tr>
<td>Midterm</td>
<td></td>
<td>10%</td>
<td>Feb 28</td>
</tr>
<tr>
<td>A3</td>
<td>processes</td>
<td>10%</td>
<td>March 15, 8:00pm</td>
</tr>
<tr>
<td>A4</td>
<td>communication</td>
<td>10%</td>
<td>April 5, 8:00pm</td>
</tr>
<tr>
<td>Final Exam</td>
<td>everything</td>
<td>40%</td>
<td>exam period</td>
</tr>
</tbody>
</table>
Assignments

• You will use git to manage and submit your assignments.
• The repositories are already set up.
• Submit your assignment to your repo well before the due date. Then submit again and again as you improve your solution.
• All code must work on teach.cs to receive full marks.
• Code that does not compile on teach.cs will get 0.
• See course syllabus for late penalties.

Weekly Lab Exercises

• Held in BA labs (3175/3185/3195)
 – Wed 8-9 pm
 – Fridays 1, 2, or 3 pm
• Starting this week
• Submit your work on MarkUs for credit
 – 1% per lab
 – No credit for attendance
• Due by 6:30pm Friday (no lates accepted)

Complete Lab 0 (not for credit) Now!
Software Installation

• Lab 0 will help
• Take advantage of the help centre
 – M-F 2-6pm in BA2230

Plagiarism

• “The work you submit must be your own, done without participation by others. It is an academic offence to hand in anything written by someone else without acknowledgement.”
• You are hurting your friend when you give him or her a copy of your assignment.
• You are hurting your friend when you ask him or her to give you a copy of their assignment.
What is cheating?

• Cheating is
 – copying parts or all of another student’s assignment
 – including code from books, web sites, other courses without attribution
 – getting someone else to do substantial parts of your assignment
 – giving someone else your solution
• Cheating is not
 – helping to find a bug in a friend’s code (be careful)
 – helping each other understand man pages or example code

What is this Course About?

• Software Tools
 – Efficiently use the Unix Command Line
 – Understand the shell
 – Use Basic Shell Programming
 – Understand and use Make
• Systems Programming
 – C
 – files
 – processes
 – communication
Unix Principles

• Do one basic thing well
 – with some basic variations
• Simple input formats
 – plain text
 – don’t require interactive input
 • stdin to stdout/stderr
• Simple output format
 – expected to be input to another tool

Unix Tools Example

• ls, wc, sort, …
• standard input/ standard output
• pipes
Unix is user-friendly; it’s just choosy about who its friends are.

Basic Tools to Learn

- head, tail
- cd
- mkdir
- ls
- cp
- mv
- rm
- diff
- comm
- cut
- cat
- wc
- grep
- who
Unix manual

• man example
• don’t memorize - look it up!
• it grows on you

Shells

$ gcc -Wall -g -std=gnu99 -o hello hello.c

• The $ is a shell prompt.
• Shells
 – accept commands (programs) as input
 – finds the executable
 – interprets the arguments
 – starts executing the command
• Shells also have some “built-in” commands.
Running a program

$ gcc -Wall -g -std=gnu99 –o hello hello.c
$ hello

• load a program into memory and hand it off to the OS to run the program.

Files and Directories

• “Everything is a file.”
• Unix provides a file interface for all Input/Output.
 – regular files
 – directories
 – devices
 • video
 • keyboard
 • sound
 • network
• File interface = open, read, write, close
File System Hierarchy

• Everything starts in the “root” directory whose name is “/”
• A directory is a file that contains directory entries.
• A directory entry maps a file name to an inode.
• An inode is the data structure that contains information about a file, including which disk blocks contain the file data.

Inodes and Directory Entries

<table>
<thead>
<tr>
<th>Directory Entry</th>
<th>Inode</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345 afile</td>
<td>size</td>
</tr>
<tr>
<td></td>
<td>owner UID, GID</td>
</tr>
<tr>
<td></td>
<td>access time</td>
</tr>
<tr>
<td></td>
<td>modified time</td>
</tr>
<tr>
<td></td>
<td>creation time</td>
</tr>
<tr>
<td></td>
<td>link and block counts</td>
</tr>
<tr>
<td></td>
<td>permissions</td>
</tr>
<tr>
<td></td>
<td>direct pointers to file blocks</td>
</tr>
<tr>
<td></td>
<td>single indirect pointer</td>
</tr>
<tr>
<td></td>
<td>double indirect pointer</td>
</tr>
<tr>
<td></td>
<td>triple indirect pointer</td>
</tr>
</tbody>
</table>

pointers to next file blocks
File System Hierarchy

Directories and Links

<table>
<thead>
<tr>
<th>directory file</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 .</td>
</tr>
<tr>
<td>2 ..</td>
</tr>
<tr>
<td>14 u</td>
</tr>
<tr>
<td>46505 home</td>
</tr>
<tr>
<td>139412 cdrom</td>
</tr>
<tr>
<td>201345 lib</td>
</tr>
</tbody>
</table>

% ls -l /
- drwxr-xr-x 2 root root 4096 Nov 8 17:56 bin/
- drwxr-xr-x 2 root root 4096 Aug 10 14:46 cdrom/
- drwxrwxr-x 2 root staff 4096 Feb 8 2002 home/
- drwxr-xr-x 6 root root 4096 Sep 2 15:26 lib/
- lrwx------- 1 root root 6 Sep 2 15:32 -> /cdf/u/
Permissions

• File permissions
 – read, write, execute – pretty much what you think

• Directory permissions
 – read – you can run ls on the directory
 – write – you can create and delete files in the directory
 – execute – you can “pass through” the directory when searching subdirectories.

chmod

• chmod 755 <filename>
 – 3 numbers between 0 and 7, the octal value for that category of user
 – Quiz — what is the command to set the permissions of the file classlist to be world readable but writeable only by the file owner and members of the group.

• Another approach
 – chmod u+rwx
 – chmod go-x
 – adds or removes permissions for those categories of users
Globbing

- A little like regular expressions but different syntax
- * matches any number of any character
- ? matches any one character
- [list of characters]
- [1-5] or [a-z] or [a-xz]