
CSC207H: Software Design

CSC207
http://www.teach.cs.toronto.edu/~csc207h/sum

mer/

Instructors: Lindsey Shorser, David Jorjani
Email: csc20718y@cs.toronto.edu

Summer 2018

1

An introduction to software design and development
concepts, methods, and tools using a statically-typed
object-oriented programming language such as Java. Topics
from: version control, unit testing, refactoring, object-oriented
design and development, design patterns, advanced IDE
usage, regular expressions, and reflection. Representation of
floating-point numbers and introduction to numerical
computation.

— The Arts and Science Calendar

http://www.teach.cs.toronto.edu/~csc207h/summer/
http://www.teach.cs.toronto.edu/~csc207h/summer/

CSC207H: Software Design

You …
… know the CSC108, CSC148, and (usually) the CSC165
material: lists, dictionaries, functions, classes, stacks,
queues, trees, recursion, unit testing, logical notation and
reasoning, the basics of computational complexity (big-Oh),
and an approach to developing functions (the function design
recipe).

… presumably want to do very well in this course.

… should expect to spend 8–10 hours a week on each of
your courses (including lectures and labs).

… might think about this course as training for a software
internship.

2

CSC207H: Software Design

Learning goal:
Object-oriented programming in a

statically-typed language
• Strong typing

• Lots of inheritance

• Unit testing

• File handling

• A memory model for Java

• Exception handling

• Floating-point issues

CSC207H: Software Design

• How to think about and plan a large program

• How to analyze requirements

• How to safely refactor code

• Design patterns

• Version control (using git)

• Aspects of team dynamics

• An Integrated Development Environment (IntelliJ)

Learning goal:
Fundamental code development
techniques used professionally

4

CSC207H: Software Design

How we’re going to
teach

• 2 lecture hours / week

• 10 (ish) 1-hour labs

• 1 45-minute midterm in week 5

• 2 individual assignments

• A two-phase project in the second half of the course

• 1 final exam

5

CSC207H: Software Design

Coursework Overview

6

Work Weight Comment

Labs (8) 8% 1% each, best 8 out of 10

A1 5% Individual

A2 10% Individual

Project: Phase 1 10% Group: team of four
from the same lecture

section Project: Phase 2 17%

Test 10% during lab time (bring
your TCard)

Final Exam 40%
You must get ≥ 40%
on the final exam to

pass CSC108!

CSC207H: Software Design

Resources
• Portal/Blackboard: Announcements, Grades

• Course website: Readings, Links
• www.teach.cs.toronto.edu/~csc207h/summer/

• Discussion board

• Office hours
• BA3201: Tuesdays 5:30 pm -6:30 pm

• Lectures and labs!

• Anonymous feedback (if you don’t want to email us or post on
the boards): please give us constructive suggestions!

• Help Centre in BA2230 every weekday 4-6 pm, except
holidays

• PCRS and On-Line Tutorials (see course website) 7

http://www.teach.cs.toronto.edu/~csc207h/summer/

CSC207H: Software Design

General Resources
• Lectures and Labs

• Office Hours

• Discussion Forum

• Help Centre

• On-Line Communities?

• PCRS and on-line tutorials

• Oracle Website
8

CSC207H: Software Design

Java Reference
Materials

• Course website (readings, lecture notes, links)

• This reference is particularly useful:

• http://docs.oracle.com/javase/tutorial/java/TOC.htm
l

• Java PCRS
• This website does a nice job walking you through Java if the PCRS isn’t enough:

• https://www.sololearn.com/Course/Java/

• Email registration is required

• Have you heard about disposable email addresses?
https://en.wikipedia.org/wiki/Disposable_email_address

• Here’s a top-15 article about the topic:
www.updateland.com/15-best-fake-email-address-generator-online/

9

http://docs.oracle.com/javase/tutorial/java/TOC.html
http://docs.oracle.com/javase/tutorial/java/TOC.html
https://www.sololearn.com/Course/Java/
https://en.wikipedia.org/wiki/Disposable_email_address

CSC207H: Software Design

8–10 hours before the end
of the day next Thursday

• Attend lecture (2 hours)

• Attend lab next week (1 hour)

• Log into the Teaching Labs and run IntelliJ IDEA (1/2 hour)

• Install Git, Java, and IntelliJ on your own computer (1 hour)

• Work through Quest 1 on the PCRS and practice in IntelliJ (4
hours)

• Lab next week will involve Java code, so you should try to
get through as much as you can before next Thursday

1
0

CSC207H: Software Design

What does it mean to run a
program?

What is a program?

A set of instructions for a computer to follow.

To run a program, it must be translated from a high-level
programming language to a low-level machine language whose
instructions can be executed.

Roughly, two flavours of translation:

• Interpretation

• Compilation

11

CSC207H: Software Design

Interpreted vs.
Compiled

• Interpreted (like Python)

• Translate and execute one statement at a time

• Compiled (like C)

• Compile the entire program (once), then execute (any
number of times)

• Hybrid (like Java)

• Compile to something intermediate (in Java, bytecode)

• The Java Virtual Machine (JVM) runs this intermediate
code

12

CSC207H: Software Design

Compiling Java
If using command line, you need to do this manually.

First, compile using “javac”:

jsin@laptop$ javac HelloWorld.java

This produces file “HelloWord.class”:

jsin@laptop$ ls

HelloWorld.class HelloWorld.java

Now, run the program using “java”:

jsin@laptop$ java HelloWorld

Hello world!

Most modern IDEs offer to do this for you (IntelliJ does).

But you should know what’s happening under the hood!
13

CSC207H: Software Design

SOLID Principles of
Object-Oriented Design

• How do we make decisions about what is better and
what is worse design?

• Principles to aim for instead of rules.

• For example, there is no maximum number of
class you should have in your program, nor a
minimum. But if the number of classes violates a
generally accepted principle, you should
reconsider your class structure.

• The SOLID principles are useful and cover most major
situations you are likely to encounter.

14

CSC207H: Software Design

Software design goals
• A major goal when programming is to write an

easy-to-read, hard-to-break, maintainable, efficient
program.

• Software design has you use a set of principles and
techniques that help you do this. This lecture is an
introduction to the tools and techniques we’ll see in
this course.

• We’ll cover each of these in more detail later in the
course.

15

CSC207H: Software Design

Fundamental OOP
concepts

• Abstraction — the process of distilling a concept to a set of essential
characteristics.

• Encapsulation — the process of binding together data with methods
that manipulate that data, and hiding the internal representation.

• The result of applying abstraction and encapsulation is (often) a class
with instance variables and methods that together model a concept
from the real world. (Further reading: what’s the difference between
Abstraction, Encapsulation, and Information hiding?)

• Inheritance — the concept that when a subclass is defined in terms
another class, the features of that other class are inherited by the
subclass.

• Polymorphism (“many forms”) — the ability of an expression (such as
a method call) to be applied to objects of different types.

16

CSC207H: Software Design

Fundamental OOD goals:
low coupling, high cohesion

• Coupling — how much a class is directly linked to another
class.

• High coupling means that changes to one class may lead to
changes in several other classes.

• Low coupling is, therefore a desired goal.

• Cohesion — how much the features of a class belong together.

• Low cohesion means that methods in a class operate on
unrelated tasks. This means the class does jobs that are
unrelated.

• High cohesion means that the methods have strongly-related
functionality.

17

CSC207H: Software Design

Fundamental OOD
principles

SOLID: five basic principles of object-oriented (Developed by
Robert C. Martin, affectionately known as “Uncle Bob”.)

• Single responsibility principle

• Open/closed principle

• Liskov substitution principle

• Interface segregation principle

• Dependency inversion principle

18

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Single Responsibility
Principle

Every class should have a single responsibility.

Another way to view this is that a class should only have one reason to
change.

But who causes the change?

“This principle is about people. … When you write a software module, you
want to make sure that when changes are requested, those changes can only
originate from a single person, or rather, a single tightly coupled group of
people representing a single narrowly defined business function. You want to
isolate your modules from the complexities of the organization as a whole,
and design your systems such that each module is responsible (responds to)
the needs of just that one business function.” [Uncle Bob, The Single
Responsibility Principle]

http://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
http://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html

Open/Closed Principle
(simplified)

Software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification.

Add new features not by modifying the original class, but rather
by extending it and adding new behaviours, or by adding plugin
capabilities.

“I’ve heard it said that the OCP is wrong, unworkable,
impractical, and not for real programmers with real work to do.
The rise of plugin architectures makes it plain that these views
are utter nonsense. On the contrary, a strong plugin
architecture is likely to be the most important aspect of future
software systems.” [Uncle Bob, The Open Closed Principle]

http://blog.cleancoder.com/uncle-bob/2014/05/12/TheOpenClosedPrinciple.html

Open/Closed Principle
(simplified)

An example, using inheritance:

 area calculates the area of all Rectangles in the input.

 What if we need to add more shapes?

Open/Closed Principle
(simplified)

With this design, we can add any number of shapes (open for extension)
and we don't need to re-write the AreaCalculator class (closed for
modification).

 Liskov Substitution
Principle (simplified)

If S is a subtype of T, then objects of type S may be
substituted for objects of type T, without altering any of the
desired properties of the program.

“S is a subtype of T”?

 In Java, S is a child class of T, or S implements interface
T.

For example, if C is a child class of P, then we should be
able to substitute C for P in our code without breaking it.

 Liskov Substitution
Principle (simplified)

 A classic example of breaking this principle:

 Liskov Substitution
Principle (simplified)

In OO programming and design, unlike in math, it is not the
case that a Square is a Rectangle!

This is because a Rectangle has more behaviours than a
Square, not less.

The LSP is related to the Open/Closed principle: the
subclasses should only extend (add behaviours), not modify
or remove them.

Interface Segregation
Principle

Here, interface means the public methods in a class. (In Java, these are
often specified using a Java interface, which you’ll learn about
soon.)

Context: a class that provides a service for other “client” programmers
usually requires that the clients write code that has a particular set of
features. The service provider says “your code needs to have this
interface”.

No client should be forced to implement irrelevant methods of an
interface. Better to have lots of small, specific interfaces than fewer
larger ones: easier to extend and modify the design.

(Uh oh: “The interface keyword is harmful.” [Uncle Bob, 'Interface'
Considered Harmful])

http://blog.cleancoder.com/uncle-bob/2015/01/08/InterfaceConsideredHarmful.html
http://blog.cleancoder.com/uncle-bob/2015/01/08/InterfaceConsideredHarmful.html

Dependency inversion
principle

When building a complex system, programmers are often
tempted to define “low-level” classes first and then build
“higher-level” classes that use the low-level classes directly.

But this approach is not flexible! What if we need to replace
a low-level class? The logic in the high-level class will need
to be replaced — an indication of high coupling.

To avoid such problems, we introduce an abstraction layer
between low-level classes and high-level classes.

Dependency inversion
principle

Goal:

You want to decouple your system so that you can change
individual pieces without having to change anything more
than the individual piece.

Two aspects to the dependency inversion principle:

High-level modules should not depend on low-level
modules. Both should depend on abstractions.

Abstractions should not depend upon details. Details
should depend upon abstractions.

Example: you have a large system, and part of it has Managers
manage Workers. Let’s say that the company is restructuring and
introducing new kinds of workers, and wants the code updated to
reflect this.

Your code current has a Manager class and a Worker class, and
the Manager class has several methods that have Worker
parameters.

Now there’s a new kind of worker called SuperWorker, and their
behaviour and features are separate from regular Workers.

Oh dear …

Dependency inversion principle
(example from Dependency Inversion

Principle on OODesign)

http://www.oodesign.com/dependency-inversion-principle.html
http://www.oodesign.com/dependency-inversion-principle.html

Dependency inversion principle
(example from Dependency Inversion

Principle on OODesign)

To make Manager work with SuperWorker, we would need
to rewrite the code in Manager.

Solution: create an IWorker interface and have Manager use
it.

http://www.oodesign.com/dependency-inversion-principle.html
http://www.oodesign.com/dependency-inversion-principle.html

In this design, Manager does not know anything about
Worker, nor about SuperWorker. It can work with any
IWorker, the code in Manager does not need rewriting.

Dependency inversion principle
(example from Dependency Inversion

Principle on OODesign)

http://www.oodesign.com/dependency-inversion-principle.html
http://www.oodesign.com/dependency-inversion-principle.html

