Commenting In Java

Katie Fraser
WIT program LWTA
Fall 2013

Java Code Conventions

* Java programs have two types of comments:
* Documentation comments, delimited by **...*\
* Implementation comments, delimited by * ...*\ or \\

* Doc comments describe the specification of the
code, and can be read and understood
iIndependently of the source code

* Often read by a user of the class

* Implementation comments explain particular
details of the implementation

* Often read by a developer modifying the class

Doc Comments and Javadoc

Terminology

* API docs or API specs - On-line or hardcopy
descriptions of the API, intended primarily for
programmers writing in Java.

* Doc comments - The special comments in the
Java source code that are delimited by the
[**...*/ delimiters. These comments are
processed by the Javadoc tool to generate the
API docs.

* Javadoc - The JDK tool that generates API
documentation from documentation comments.

Javadoc

* Javadoc Is a tool for generating APl documentation
from doc comments

* In order to work properly, Javadoc requires
comments to be written in a particular format

* Doc comments are written in HTML and
Immediately precede a class or method declaration

* Doc comments have 2 parts:

* Description
* Block tags

JEE

* X ¥ X E ¥ ® X E X X = ¥

¥/
pu

Example

Returns an Image object that can then be painted on the screen.
The url argument must specify an absolute {@link URL}. The name
argument 1s a specifier that 1s relative to the url argument.
-I:CFI}

This method always returns immediately, whether or not the
image exists. When this applet attempts to draw the 1mage on
the screen, the data will be loaded. The graphics primitives
that draw the image will incrementally paint on the screen.

@param wurl an absolute URL giving the base location of the 1mage
@param name the location of the image, relative to the url argument
@return the 1mage at the specified LURL

@see Image

blic Image getImage (URL url, String name) {
try {
return getImage(new URL{url, name)):
¥ catch (MalformedURLException e) {
return null;

}

Example

Description

Returns an Image object that can then be painted on the screen.
The url argument must specify an absolute {@link URL}. The name
argument 1s a specifier that 1s relative to the url argument.
-I:CFI}

This method always returns immediately, whether or not the
image exists. When this applet attempts to draw the 1mage on
the screen, the data will be loaded. The graphics primitives
that draw the image will incrementally paint on the screen.

@param wurl an absolute URL giving the base location of the 1mage
@param name the location of the image, relative to the url argument
@return the 1mage at the specified LURL

@see Image

S
- = o = - = = = & s = o =
-

*f
public Image getImage (URL url, String name) {
try {
return getImage(new URL{url, name)):
¥ catch (MalformedURLException e) {
return null;

}

Example

Description

S
-
-

Returns an Image object that can then be painted on the screen.
The url argument must specify an absolute {@link URL}. The name
argument 1s a specifier that 1s relative to the url argument.
-I:CFI}

This method always returns immediately, whether or not the
image exists. When this applet attempts to draw the 1mage on
the screen, the data will be loaded. The graphics primitives
that draw the image will incrementally paint on the screen.

@param wurl an absolute URL giving the base location of the 1mage
@param name the location of the image, relative to the url argument
@return the 1mage at the specified LURL

@see Image

= E O E X E ¥ X E ¥ X X xE E X

&
public Image getImage(URL url, String name) { Block tags
try {

return getImage(new URL{url, name)):
¥ catch (MalformedURLException e) {

return null;

}

Example after running Javadoc tool:

getimage

public Image getImage(URL url,
String name)
Returns an 1maoe= object that can then be painted on the screen. The w1 argument must specify an

absolute URL. The n=me= argument is a specifier that is relative to the »+ 1 argument.

This method always returns immediately, whether or not the image exists. When this applet attempts
to draw the image on the screen, the data will be loaded. The graphics primitives that draw the image
will incrementally paint on the screen.

Parameters:
-1 - an absolute URL giving the base location of the image.
= - the location of the image, relative to the -1 argument.
Returns:

the image at the specified URL.

See Also:

Javadoc Description

First sentence should be a summary sentence

Javadoc tool copies this description to the class
summary, so it should be concise and
Informative

Particularly want to distinguish overloaded
methods from each other

Description should be as implementation-
Independent as possible

Javadoc Tags

Javadoc tool parses special tags when they are
embedded within a Java doc comment

‘ags start with “@” symbols

Tags are case-sensitive

ags must start at the beginning of a line (after
any asterisks and whitespace)

Tags with the same name are grouped together

Common Javadoc Tags

* @author — author(s) of the class
* @version — software version number
* @param — the parameters of the method

* @throws — exceptions thrown by the method

* @return — values returned by the method

A full list of tags Is given at the Javadoc
Reference Page.

Order of Tags

* @author (classes and interfaces only, required)

* @version (classes and interfaces only, required)

* @param (methods and constructors only)

* @return (methods only)

* @exception (or @throws in Javadoc 1.2 onwards)
* @see

* @since

* @serial (or @serialField or @serialData)

* @deprecated

Style Guide

* Use <code> ... </code> for Java keywords and
names (class names, method names, etc.)

* Use In-line links using the @1ink tag

* But: use links sparingly, as they make comments
more difficult to read

* Omit parentheses for the general form of
methods and constructors

* e.g.add(int,Object) and add(Object)

* Refer to the method in general as add rather than
add ()

Style Guide

Use 3" person rather than 2" person
* e.g. “Gets the label” rather than “Get the label”
Begin method descriptions with a verb phrase

* e.g. “Gets the label” rather than “This method gets the
label”

Begin class, interface, and field descriptions by
simply stating what the object Is.

* e.g. “A button label” rather than “This field is a label”

Use “this” rather than “the” when when referring to
an object created from the current class.

Style Guide

* The description should provide additional information
beyond what can be inferred from the API name.

* €.0. public void setToolTipText(String text)

/**

* Sets the tool tip text.

*

* @param text the text of the tool tip
*/

* Better:

/**

Registers the text to display in a tool tip. The text
displays when the cursor lingers over the component.

*

*

*

* @param text the string to display. If the text is null,

* the tool tip is turned off for this component.
*

/

Running Javadoc

* From the command line:

javadoc *.java

* |n Eclipse:

* Create a template by typing /** <newline>

* To run Javadoc, choose the package or file for which
you want to generate the documentation

* Choose Project > Generate Javadoc
* Choose source and destination files
* Specify any extra options, then choose Finish

Running Javadoc

* In Netbeans:

* To create Javadoc comments:
- Right-click class file — Tools — Auto Comment
* To generate Javadoc documentation:
- Right-click class file -~ Tools — Generate Javadoc

* For more information and a graphical tutorial, see:
http://edu.netbeans.org/quicktour/javadoc.html

Implementation Comments

Implementation Comments

* Add comments to help others (and yourself)
understand how the code works

* Describe what the code does, but also why it is
doing what it does

* Four main styles:
* Block
* Single-line
* Tralling
* End-of-line

Implementation Comments

* Block comments can be used to provide a more
detailed description of a piece of code.
/ *

* Here 1s a block comment. Block comments
* can span several lines.

x /
* Single-line comments are used for short comments

/* A short, single-line comment. */

* |[n both cases, the comments should be indented to
the same level as the code, and should be
preceded by a blank line.

Implementation Comments

* Trailing comments can be used for very short comments

if (a == 2) {

return TRUE; /* special case */
} else {
return isPrime(a); /* works only for odd a */

}

e End-of-line comments can also be used for short
comments, or to “comment out” lines

return false; //not prime

* Note: For commenting out large sections of code, use
your IDE's “comment-out” command instead

Sources

Information and examples were taken from the following
sources:

“How To Write Doc Comments for the Javadoc Tool”

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#styleguide

» Javadoc Reference Page

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html

» Java Language Specification, First Edition

http://docs.oracle.com/javase/specs/#25995

* Code Conventions for the Java Programming Language

http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

