Ariane 5 Rocket Launch
Ariane 5 rocket explosion

- In 1996, the European Space Agency’s Ariane 5 rocket exploded 40 seconds after launch.
- During conversion of a 64-bit to a 16-bit format, overflow occurred: the number was too big to store in 16 bits.
- This hadn’t been expected because the data (acceleration reported by sensors) had never been this large before. But this new rocket was faster than its predecessor.
- $7 billion of R&D had been invested in this rocket.
- Reference: http://www.around.com/ariane.html
Example 1

• Perform some simple arithmetic, and check that the laws of mathematics hold.

• Code: Adding.java
Is Java broken?

It’s not only Java. Check this out in Python:

```python
>>> x = 0.1
>>> sum = x + x + x
>>> sum == 0.3
False
>>> sum
0.30000000000000004
>>> bigger = 1.0
>>> s = 1.0e-6
>>> sum1 = s + s + s + s + s + s + s + s + s + s + s + s + bigger
>>> sum2 = bigger + s + s + s + s + s + s + s + s + s + s + s + s
>>> sum1 == sum2
False
>>> sum1
1.00001
>>> sum2
1.0000099999999992
```
Representing numbers

• It all makes sense if you understand how “real” numbers are represented.

• First, consider an int like 42. Hardware doesn’t directly represent 4s or 2s — everything is binary.

• \(42 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0\)

• So 42 can be represented by 101010 (base 2).
Representing fractions

• Fractions can be handled using the same approach.

• Example: 0.4375 =
 \[0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}\]
 \[= 0/2 + 1/4 + 1/8 + 1/16\]
 \[= 0.25 + 0.125 + 0.0625\]
 \[= 0.4375\]

• So we can represent 0.4375 using 0.0111 (base 2).

• Another example: 0.1 =
 \[0.00011001100110011001100...\]

• 0.1 does not have a finite binary representation
Some problem numbers

- You already know from math that some numbers do not have a finite representation.
- Even worse, some numbers that have a finite representation in decimal do not in binary!
 - (Thought question: is the reverse true?)
- Computer systems have finite memory. But we need to represent numbers that take an infinite number of bits.
- Solution?
IEEE-754 Floating Point

• Like a binary version of scientific notation
• 32 bits for a float (64 bits for a double) as follows:
 • 1 bit for the **sign**
 • 8 bits for the **exponent** e
 • 23 bits for the **mantissa** (significand) M
Allocation of 32 bits

- **1 bit** for the **sign**: 1 for negative and 0 for positive
- **8 bits** for the **exponent** e
 - To allow for negative exponents, 127 is added to that exponent to get the representation. We say that the exponent is “biased” by 127.
 - So the range of possible exponents is not 0 to $2^8-1 = 0$ to 255, but $(0-127)$ to $(255-127) = -127$ to 128.
- **23 bits** for the **mantissa** M
 - Since the first bit must be 1, we don’t waste space storing it!
IEEE-754 Floating Point

(-1)^s \times (1 + M) \times 2^{e-127}
\[
(-1)^{\text{sign}} \left(1 + \sum_{i=1}^{23} b_{23-i} 2^{-i} \right) \times 2^{(e-127)}
\]

- sign = 0

- \[1 + \sum_{i=1}^{23} b_{23-i} 2^{-i} = 1 + 2^{-2} = 1.25\]

- \[2^{(e-127)} = 2^{124-127} = 2^{-3}\]

thus:

- value = \[1.25 \times 2^{-3} = 0.15625\]
Rounding

- If we have to lose some digits, we don’t just truncate, we round.

- In rounding a decimal to a whole number, an issue arises: If we have a 0.5, do we round up or down?

- If we always round up, we are biasing towards higher values.

- “Proper” rounding: round to the nearest even number.
 E.g., 17.5 is rounded up to 18 but 16.5 is rounded down to 16.

- The IEEE standard uses proper rounding also.
Historical aside

• 30 years ago, computer manufacturers each had their own standard for floating point.

• Problem? Writing portable software!

• Advantage to manufacturers? Customers got locked in to their particular computers.

• In the late 1980s, the IEEE produced the standard that now virtually all follow.

• William Kahan spearheaded the effort, and won the 1989 Turing Award for it.
Back to the example (*Adding*.java)

- As we saw, 0.1 cannot be represented exactly in binary, leading to the unexpected result.
- And adding a very small quantity to a very large quantity can mean the smaller quantity falls off the end of the mantissa.
- But if we add small quantities to each other, this doesn’t happen. And if they accumulate into a larger quantity, they may not be lost when we finally add the big quantity in.
Examples 2 and 3

- This seems contrived, but consider some value that accumulates in a loop.
 - Code: Totalling.java
- Or consider adding up a list of doubles, what should you do?
 - Code: ArrayTotal.java
Lessons

• When adding floating point numbers, add the smallest first.

• More generally, try to avoid adding dissimilar quantities.

• Specific scenario: When adding a list of floating point numbers, sort them first.
Example 4

• Repeat a task for values in a particular range with an increment of 0.1.
 • For example, for values 0.1 to 0.5 with an increment of 0.1.
 • For example, for values 1.1 to 1.5 with an increment of 0.1.

• Code: FunctionValues.java
Lessons

• Don’t use floating point variables to control what is essentially a counted loop.

• Also: Notice that we wrote
 \[x = 1.0 + i \times 0.1; \]
 instead of initializing \(x \) to 1.0 and then repeatedly adding 0.1.
 Why? Fewer total arithmetic operations means fewer rounding errors are introduced.

• Use fewer arithmetic operations where possible.
Example 5

- A very simple program that just prints the same variable using different formats.
- Code: Examine.java
What happened?

- We shouldn’t be surprised by now to find out that 4/5 can’t be represented exactly in a float. Lots of things can’t.

- But the represented value should be off by a tiny bit. What are all these extra digits??

- \(4/5 = 1.10011001\ldots\times 2^{-1}\)

- It gets rounded to \(1.1001100110011001100110_1 \times 2^{-1}\)

- When we ask to print it as a decimal number, it gets converted. The exact equivalent is \(0.8000000119209289550781250000000\)

- But only 7 of those digits are significant.
Lesson

• Don’t print more precision in your output than you are holding.
Why does this matter?
Patriot missile accident

- The system tracked time in tenths of seconds. The error in approximating 0.1 with 24 bits was magnified in its calculations.

- At the time of the accident, the error corresponded to 0.34 seconds. A Patriot missile travels about half a km in that time.

Sinking of an oil rig

• In 1992, the Sleipner A oil and gas platform sank in the North Sea near Norway.

• Numerical issues in modelling the structure caused shear stresses to be underestimated by 47%.

• As a result, concrete walls were not built thick enough.

• Cost: $700 million

• Reference: http://www.ima.umn.edu/~arnold/disasters/sleipner.html
What should you do?

“95% of folks out there are completely clueless about floating-point.”

James Gosling
Follow the lessons

• Use double instead of float.
• When adding floating point numbers, add the smallest first.
• More generally, try to avoid adding dissimilar quantities.
• Specific scenario: When adding a list of floating point numbers, sort them first.
• Don’t use floating point variables to control what is essentially a counted loop.
• Use fewer arithmetic operations where possible.
• Don’t print more precision in your output than you are holding.
• Consider taking csc336: Numerical Methods