Power Laws and Rich-Get-Richer

CSC200 Lecture 31
February 10, 2016

Allan Borodin and Amirali Salehi-Abari
CSC200: Lecture 31

• Today:
 • Popularity, Rich-get-richer, Power Laws Ch.18.1-18.4

• Announcements
 • Term test 2: This Friday, Feb.12 (in this room) ; usual rules about one sheet of notes plus bring one empty sheet for possible calculations.
 • Over the reading week, I am planning to post the first set of questions for our Assignment 4, the last assignment

• Acknowledgement:
 • Some slides’ materials are borrowed form the slides of the last offering of this course. Thanks to Professor Boutilier!
How Do Products Become Popular?

- A high-level look back: two reasons that products, services, information, etc. can become “popular” or widely used.

- **Information cascades (Ch.16):**
 - Choices made by others are informative for an agent’s decision making process.
 - When a person X observes a person Y using the product, it *conveys information* about the quality of the product.
 - X combines this information with her own private information to make a rational decision (e.g. using Bayes Rule to determine the most likely probability).

- **Positive Externalities, Direct-Benefit or “Network Effects” (Ch.17):**
 - A person’s utility depend on what other people do.
 - The more people use a product, the more benefit X derives from the product.
 - Each user X makes a rational decision whether to consume the product (e.g., adopt an OS, join clubs or a social network, read certain newspapers, etc.).
Popularity? (1)

• Popularity:

 • “A social phenomenon that dictates who or what is best liked” (Wikipedia)

 • “State of being liked, enjoyed, accepted, or done by a large number of people” (Merriam Webster Dictionary)

 • Most bought/read books: Harry Potter Series

 • Most watched Movie: Titanic

 • Most cited paper:

 • Protein measurement with the folin phenol reagent (Lowry et. al, 1951)

 • Number of Citation: 305,148 (data extracted on Oct. 2014)

 • Lowry’s comments: “Although I really know it is not a great paper ... I secretly get a kick out of the response”

 • Source: http://www.nature.com/news/the-top-100-papers-1.16224
The questions that we try to address in next two lectures:

• How can we quantify popularity and imbalances that it cause?

• How is popularity distributed? And why does such a distribution arise?

• Do items, people, etc. become popular because of some intrinsic value or network process or to what extent is it based on chance?
Case Study: Web Graph

- We study popularity of the web pages but the idea here are applicable to any other contexts (e.g., social networks, movies, etc.)
- The **popularity** of a web page: the number of **in-links**.
 - Higher number of in-links, greater popularity
- Our popularity question:
 - How popularity is distributed over the set of webpages?
 - Or what fraction of web pages have k in-links?
- What is your guess?
 - A natural guess is **Normal Distribution**.

Image is taken from http://cheswick.com/ches/map/gallery/index.html
Normal Distribution

• Normal (or Gaussian) distribution (bell curve).
 - Ubiquitous in Nature.

• Characterized by mean μ and standard deviation σ

 - Probability of seeing a specific sample average decreases exponentially with distance from mean μ.
 - Very large, or very small numbers are extremely unlikely.

From: http://www.answers.com/topic/normal-distribution
Central Limit Theorem

- Central Limit Theorem explains how normal distribution arises:
 - Given a set of independent random variables. Their mean (or sum) will be approximately normally distributed.

- For instance, suppose each user from some population of $N=25$ users buys a certain book with probability $p=0.4$ independent of what others do.
- Then the expected number of books sold will be $pN = 10$
- The distribution of books sold will be approximately normal with mean $pN = 10$ and variance $p(1-p)N=6$.
- What are the independent random variables in this example?

Normal approximation to binomial distribution $B(N=25,p=0.4)$; see [here](http://www.quantdec.com/envstats/notes/class_06/properties.htm) if not familiar with binomial distribution.
Back to our Web Graph Case Study

• What is the implication of Central Limit Theorem for webpages (or social networks)?

• If web pages (or people) decide independently at random on whether or not to link to any other web page, then what can you say about degree distribution?

• Based on Central Limit Theorem, as the number of in-links is the sum of many independent random quantities, the in-degree should be approximately normally distributed.

 • So, the number of pages with k in-links should decrease exponentially as k grows large.

 • Also, very large or small numbers of links are extremely unlikely.

• Does this happen in real-world?

 No.
Power Law Distribution.

• By crawling large sets of web pages and measuring the in-degree distributions, the recurring finding is that the fraction of web pages with k in-links is approximately proportional to k^{-2} (not to normal distribution).
 - k^{-2} decreases (with k) much slower than normal dist. does.
 - Small or large in-links values are more likely to occur compared to normal distribution. (We mentioned “heavy-tailed distributions” in Lecture 23.)

• A function that decreases proportionately with k to some fixed power is called a power law
 - e.g., number of web pages with k in-links: $f(k) = \alpha k^2 = \alpha 1/k^2$
 - α is a normalizing constant (varies with total number of pages, links)

• Power laws occur in:
 - Distribution of wealth follows a power law (Pareto distribution)
 - The fraction of books bought by k people $\propto k^{-3}$
 - The fraction of phones receiving k calls per day $\propto k^{-2}$
 - Citations to scientific articles, roughly $f(k) = \alpha/k^3$
 - Zipf observed that English word usage (in say a novel) follows a power law.
 - City sizes follow a power law.
Power Law vs. Normal Distribution

From "Linked: The New Science of Networks"

The “hub terminology” here is inconsistent with E&K definition.
Power Laws are Scale-free

- The ratio of \(f(k) \) to \(f(k') \) depends only on the ratio \(k/k' \) not on their magnitude or “scale”
 - \(f(k)/f(k') = \alpha k^{-c}/\alpha k'^{-c} = (k/k')^{-c} \)
 - \(f(2k)/f(2k') = \alpha 2k^{-c}/\alpha 2k'^{-c} = (k/k')^{-c} \)
 - If you “slide along” on distribution, “relative picture” stays the same
- Scale-free: the unit of measurement does not matter.
- They also have long (or fat) tails
 - significant numbers of events occur with large values of \(k \)
 - due to scale-free property: the relative reduction from \(f(5) \) to \(f(10) \) is same as from \(f(50) \) to \(f(100) \), \(f(1000) \) to \(f(2000) \), etc.: very stretched out!
 - compare Pareto distribution to normal distribution as \(k \) grows
Example 1: Links to Web Pages

- $f(k)$: fraction of web pages with k in-links.
- $f(k) = \alpha k^{-2}$
 - So $\frac{f(1)}{f(2)} = 2^2 = 4$ times as many pages with 1 in-link as 2.
 - So $\frac{f(2)}{f(3)} = \frac{2^{-2}}{3^{-2}} = \frac{9}{4}$ times as many pages with 2 links as 3.
 - So $\frac{f(3)}{f(4)} = \frac{3^{-2}}{4^{-2}} = \frac{16}{9}$ times as many pages with 3 links as 4.
 - ... 1.21 times as many pages with 10 links as 11 (ratio is 121/100)
 - ... 1.02 times as many pages with 100 links as 101 (ratio is $101^2/100^2$)

- Notice that the *relative decrease* in number of pages with 1 additional links slows down very quickly, leaving a reasonable proportion of pages with large numbers of links

- BTW, can you quickly determine $\frac{f(6666666666)}{f(8888888888)} = ?$
Example 2: What does $1/k^2$ Look Like?

• Suppose 1000 pages link to each other.
• Limit ourselves to maximum of 10 in-links per page (for simplicity).
 • In-link distribution: $f(k) = \alpha k^{-2}$.
 • Table shows approx. number of pages with 1, 2, ... 10 in-links
• Math is simple:
 • We know $\sum_{k=1}^{10} f(k) = 1$, so $\alpha \approx 0.645$
 • So, number of pages with
 • 1 in-link = $f(1) \times 1000 \approx 645$
 • 2 in-link = $f(2) \times 1000 = 0.645 \times 2^{-2} \times 1000 \approx 161$
 • ...
 • What is the number of edges?
 • $645 \times 1 + 161 \times 2 + \ldots + 10 \times 6 = 1884$
 • Edge density $p = 1884/(1000 \times 999) \approx 0.0019$

<table>
<thead>
<tr>
<th>k (# of in links)</th>
<th>$1/k^2$</th>
<th>how many pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>645</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td>161</td>
</tr>
<tr>
<td>3</td>
<td>1/9</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>1/16</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>1/25</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>1/36</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>1/49</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>1/64</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>1/81</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>1/10</td>
<td>6</td>
</tr>
</tbody>
</table>
Example 3: uniformly at random

- Table shows approx. number of pages with 1, 2, ... 10 in-links for In-link distribution \(f(k) = \alpha k^{-2} \)
 - About 6 of 1000 pages have 10 in-links
- **Contrast:** suppose each page selects its out-link uniformly at random with \(p = 0.0019 \) (the same edge density in Example 2).
 - Each target page has \(p=19/10000 \) chance of being selected by a specific source page.
 - Chance of a specific page having 10 in-links is \(= \binom{999}{10} p^{10} (1 - p)^{989} \approx 2.44 \times 10^{-5} \)
 - Expected number of webpages with 10 in-links \(\approx 0.0244 \).
 - **Comparing this with 6 in power laws model, we see the power laws model have \(\approx 6/.0244 \approx 245 \) more times as many webpages with 10 in-links!!

<table>
<thead>
<tr>
<th>k (no of in links)</th>
<th>1/k²</th>
<th>how many pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>645</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td>161</td>
</tr>
<tr>
<td>3</td>
<td>1/9</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>1/16</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>1/25</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>1/36</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>1/49</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>1/64</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>1/81</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>1/100</td>
<td>6</td>
</tr>
</tbody>
</table>