Proving Equivalence

1. Prove that \(P \implies (Q \implies (R \implies S)) \) is equivalent to \((P \land Q \land R) \implies S \).

 Sample solution:

 \[
 P \implies (Q \implies (R \implies S)) \iff \neg P \lor (\neg Q \lor (\neg R \lor S)) \quad \text{[implication rule]}
 \]

 \[
 \iff (\neg P \lor \neg Q \lor \neg R) \lor S \quad \text{[associativity of \lor]}
 \]

 \[
 \iff (\neg P \land \neg Q \land \neg R) \lor S \quad \text{[DeMorgan’s Law]}
 \]

 \[
 \iff (P \land Q \land R) \implies S \quad \text{[implication rule].}
 \]

2. Prove that \(((P \implies Q) \implies R) \implies S \) is equivalent to \((\neg P \land \neg R) \lor (Q \land \neg R) \lor S \).

 Sample solution:

 \[
 ((P \implies Q) \implies R) \implies S \iff (\neg (\neg P \lor Q) \lor R) \lor S \quad \text{[implication rule]}
 \]

 \[
 \iff ((\neg P \lor Q) \land \neg R) \lor S \quad \text{[DeMorgan’s Law]}
 \]

 \[
 \iff (\neg P \land \neg R) \lor (Q \land \neg R) \lor S \quad \text{[distributivity of \land]}
 \]

Negation

1. Every dog has its day, or perhaps its cat.

 Sample solution: Some dog has neither its day nor its cat.

2. \(\forall x \in X, \exists y \in Y, x > y \land y > x \)

 Sample solution: \(\exists x \in X, \forall y \in Y, x \leq y \lor y \leq x \)

Guarantees

Consider the statement:

(S1) A and B are both guarantees that C is true.

1. \((A \implies C) \land (B \implies C) \) or \((A \lor B) \implies C \)
2. “Being rich and being beautiful are both guarantees that one is hated.”

3. Suppose (S1) is true and A is false. What, if anything, can be determined about B and C? Briefly justify.
 Nothing. It tells us nothing about C, and A is unrelated to B.

4. Suppose (S1) is true and C is false. What, if anything, can be determined about A and B? Briefly justify.
 A is false and B is false. This comes from the contrapositive(s) of the implication(s), which must be true.