Do not turn this page until you have received the signal to start. (In the meantime, please fill out the identification section above, and read the instructions below.)
IMPORTANT: For all questions, you must use the proof structures and format of this course. Otherwise, you won’t get full mark even if your answer is correct.

Question 1. [13 marks]

Use the proof structure from this course to prove or disprove the following claims.

Note: You will receive part marks just for correctly writing the proof structure (aka the proof outline).

Part (a) [6 marks] S_1: For all integers n, $7n + 3$ is divisible by 7.

Solution: The claim is false, so I disprove it.

Here’s the translation of the claim:

$$\forall n \in \mathbb{Z}, 7 \mid (7n + 3).$$

To disprove it, I must prove the negation of the claim:

$$\exists n \in \mathbb{Z}, 7 \nmid (7n + 3).$$

Let $n = 0$. Then $n \in \mathbb{Z}$. # since $0 \in \mathbb{Z}$
Then $7n + 3 = 7 \times 0 + 3 = 3$. # substitute n by 0
Then $7 \nmid 7n + 3$. # 7 does not divide 3
Then $\exists n \in \mathbb{Z}, 7 \nmid (7n + 3)$. # introduce \exists

Part (b) [7 marks] S_2: For all integers if n is even, then $7n + 4$ is even.

Solution: The claim is true.

Here’s the translation of the claim:

$$\forall n \in \mathbb{Z}, \text{Even}(n) \Rightarrow \text{Even}(7n + 4).$$

Assume $n \in \mathbb{Z}$. # n is a typical integer
Assume n is even. # antecedent
Then exists $k_0 \in \mathbb{Z}$ such that $n = 2k_0$. # definition of even numbers
Then $7n + 4 = 14k_0 + 4$. # substitute n by $2k_0$ and algebra
Then exists $k_1 \in \mathbb{Z}$ such that $7n + 4 = 2k_1$. # $k_1 = 7k_0 + 2$, and $k_1 \in \mathbb{Z}$
Then $7n + 4$ is even. # definition of even numbers
Then $\text{Even}(n) \Rightarrow \text{Even}(7n + 4)$. # contrapositive is equivalent to the implication
Then $\forall n \in \mathbb{Z}, \text{Even}(n) \Rightarrow \text{Even}(7n + 4)$. # introduce \forall
Question 2. [12 marks]

Use the proof structure from this course to prove S_3.

Note: You will receive part marks just for correctly writing the proof structure (aka the proof outline).

S_3: For all integers n, if $n^2 + 5$ is odd, then n is even.

Solution: Here's the translation of the claim:

$$\forall n \in \mathbb{Z}, \text{Odd}(n^2 + 5) \Rightarrow \text{Even}(n).$$

Assume $n \in \mathbb{Z}$. \# n is a typical integer

Assume n is odd. \# antecedent of the contrapositive

Then exists $k_0 \in \mathbb{Z}$ such that $n = 2k_0 + 1$. \# definition of odd numbers

Then $n^2 + 5 = (2k_0 + 1)(2k_0 + 1) + 5 = 4k_0^2 + 4k_0 + 6$. \# substitute n by $2k_0 + 1$ and algebra

Then exists $k_1 \in \mathbb{Z}$ such that $n^2 + 5 = 2k_1$. \# $k_1 = 2k_0^2 + 2k_0 + 3$, and $k_1 \in \mathbb{Z}$

Then $n^2 + 5$ is even. \# definition of even numbers

Then $\text{Odd}(n) \Rightarrow \text{Even}(n^2 + 5)$. \# introduce \Rightarrow

Then $\text{Odd}(n^2 + 5) \Rightarrow \text{Even}(n)$. \# contrapositive is equivalent to the implication

Then $\forall n \in \mathbb{Z}, \text{Odd}(n^2 + 5) \Rightarrow \text{Even}(n)$. \# introduce \forall
Question 3. [15 marks]

Use proof by contradiction to prove that there is no integer \(n \) such that \((n \equiv 5 \mod 6) \) and \((n \equiv 3 \mod 12) \).

Note 1: You will receive part marks just for correctly writing the proof structure (aka the proof outline).

Note 2: You must use the proof structure from this course.

Hint: Recall that for integers \(x, y, z \), the notation \(x \equiv y \mod z \) means "\(x - y \) is a multiple of \(z \)."

Solution: Here's the translation of the claim:

\[\neg (\exists n \in \mathbb{Z}, (n \equiv 5 \mod 6) \land (n \equiv 3 \mod 12)) \]

We must assume the negation of the claim and then derive a contradiction.

Assume \(\exists n \in \mathbb{Z}, (n \equiv 5 \mod 6) \land (n \equiv 3 \mod 12) \). \# to derive a contradiction

Then exists \(k_0 \in \mathbb{Z} \) such that \(n - 5 = 6k_0 \). \# definition \(\mod \)

Then \(n = 6k_0 + 5 \). \# add 5 to both sides of the above equality

Also exists \(k_1 \in \mathbb{Z} \) such that \(n - 3 = 12k_1 \). \# definition \(\mod \)

Then \(n = 12k_1 + 3 \). \# add 3 to both sides of the above equality

Then \(12k_1 + 3 = 6k_0 + 5 \). \# both are equal to \(n \)

Then \(12k_1 - 6k_0 = 2 \). \# subtract \(6k_0 + 3 \) from both sides

Then \(2k_1 - k_0 = 2/6 \). \# divide both sides by 6

Contradiction! \# \(2k_1 - k_0 \in \mathbb{Z} \), but \(2/6 \) is not an integer

Then \(\neg (\exists n \in \mathbb{Z}, (n \equiv 5 \mod 6) \land (n \equiv 3 \mod 12)) \). \# assuming the negation leads to a contradiction
This page is left (nearly) blank to accommodate work that wouldn’t fit elsewhere.

1: _____/13
2: _____/12
3: _____/15

TOTAL: _____/40