Worksheet Claims (and Proof sketches)

Claim 1 \(\forall x \in \mathbb{N} \; x/x \)

Let \(x \in \mathbb{N} \)

Let \(k = 1 \).

Then \(x = x \cdot k \)

\(\Rightarrow \exists k \in \mathbb{Z} \quad x = x \cdot k \)

Claim 2 \(\forall x, y \in \mathbb{N} \; y \geq 1 \land x/y \Rightarrow 1 \leq x \land x \leq y \)

Let \(x, y \in \mathbb{N} \) and assume \(y \geq 1, x/y \)

Let \(k \in \mathbb{Z} \) be such that \(y = k \cdot x \) (since \(x/y \))

1. \(y = k \cdot x, y \geq 1 \Rightarrow k \cdot x \geq 1 \)

 Therefore \(k, x \geq 0 \)

 \(\therefore x \geq 1 \)

2. \(y = k \cdot x \) and \(x, y \in \mathbb{N} \Rightarrow k \cdot x = 1 \)

Since \(y = 1, x \leq y \)
Claim 3: \(\forall n, p \in \mathbb{N} \) \(\text{Prime}(p) \land p \nmid n \Rightarrow \gcd(p, n) = 1 \)

Let \(n, p \in \mathbb{N} \)

We will prove the statement by contradiction.

Assume \(\text{Prime}(p) \), and \(p \nmid n \), and \(\gcd(p, n) \neq 1 \)

Let \(k \in \mathbb{N} \), \(k \geq 2 \) such that \(k \mid p \) and \(k \nmid n \)

(\ since \(\gcd(p, n) \neq 1 \) \)

Since \(p \) is prime, \(k \mid p \) implies that \(k = p \)

But this implies \(p \mid n \) which contradicts our assumption that \(p \nmid n \).
Claim 4 \(\forall n, m \in \mathbb{Z}^+ , \gcd(n, m) = 1 \)

Let \(n \), \(m \in \mathbb{Z}^+ \\
\text{let } K = \gcd(n, m) \\
\text{then } K|n \text{ and } K|m \\
\text{therefore } \exists n_1 \text{ such that } K \cdot n_1 = n \\\n\text{since } n \in \mathbb{Z}^+ \text{ and } K \in \mathbb{N}, \\
K = 1 \left(\begin{array}{l}
\text{K can't be negative since } n_i + n \text{ are both non-negative} \\
\text{and K can't be 0 since } n \text{ is in } \mathbb{Z}^+ \\
\end{array} \right) \)
Claim 5 \(\forall n,m \in \mathbb{N} \ \forall r,s \in \mathbb{Z} \) \(\gcd(n,m) \mid (rn+sm) \)

Let \(n,m \in \mathbb{N} \), let \(r,s \in \mathbb{Z} \)

Let \(K = \gcd(n,m) \). Then \(K \mid n \) and \(K \mid m \)

We want to show \(\exists K' \in \mathbb{Z} \) such that \(K \cdot K' = rn + sm \)

Since \(K \mid n \), by definition of divide \(\exists n_1 \in \mathbb{Z} \) such that \(K \cdot n_1 = n \)

Similarly, since \(K \mid m \) \(\exists m_1 \in \mathbb{Z} \) such that \(K \cdot m_1 = m \)

Then \(K \cdot n_1 = n \Rightarrow r \cdot K \cdot n_1 = r \cdot n \)

and \(K \cdot m_1 = m \Rightarrow s \cdot K \cdot m_1 = s \cdot m \)

So \(r \cdot n_1 + s \cdot k \cdot m_1 = rn + sm \)

\[\therefore K(r \cdot n_1 + s \cdot m_1) = rn + sm \]

Let \(K' = r \cdot n_1 + s \cdot m_1 \). Then \(K \cdot K' = rn + sm \)
Claim 6: $\forall n,m \in \mathbb{N} \ \exists a,b \in \mathbb{Z} \ \text{such that } an + bm = \gcd(n,m)$

*Note this claim is advanced and you won't be expected to prove it on an exam!

Let d be the smallest positive integer such that there exists $s,t \in \mathbb{Z}$ such that $ns + mt = d$.

We will prove that $d|n$ and $d|m$. Since all elements of the form $nx + my$, $x,y \in \mathbb{Z}$ are divisible by $\gcd(n,m)$, it follows that d is the greatest common divisor.

Write $n = dq + r$, where $0 \leq r < d$ (so r is the remainder).

Then $r = n - dq = n - q(ns + mt)$

\[= n(1 - qs) - mq \]

But r is of the form $nx + my$, so $r = 0$.

$\therefore d|n$. A similar argument shows that $d|m$.