Learning Objectives

By the end of this worksheet, you will:

- Analyse the average running time of an algorithm.

1. Average-case analysis. Consider the following algorithm that we studied a few weeks ago. The input is an array \(A \) of length \(n \), containing a list of \(n \) integers.

```python
def hasEven(A):
    """A is a list of integers.""
    n = len(A)
    even = False
    for i in range(n):
        if A[i] % 2 == 0:
            print('Even number found')
            return i
    print('No even number encountered')
    return -1
```

In class we proved that the worst-case complexity of this algorithm is \(\Theta(n) \). In this problem we will examine the average case complexity of this algorithm.\[1\]

For simplicity, we will assume that the input is a binary array \(A \) of length \(n \). That is, \(A \) is an array containing a list of \(n \) integers, where each integer is either 0 or 1.

(a) For each \(n \in \mathbb{Z}^+ \), let \(T_n \) be the set of all binary arrays of length \(n \). Write an expression (in terms of \(n \)) for \(|T_n| \), the size of \(T_n \).

Solution

The number of inputs of length \(n \) is \(2^n \), thus \(|T_n| = 2^n \).

\[1\] Depending on your lecture section, you may have seen this example already. Even so, please treat this question as a good opportunity for review!
(b) For each $n \in \mathbb{Z}^+$ and each $i \in \{0, 1, \ldots, n - 1\}$, let $S_n(i)$ denote the set of all binary arrays A such that the first 0 occurs in position i. More precisely, let $S_n(i)$ denote the binary arrays that satisfy the following two properties:

(i) $A[i] = 0$.
(ii) for all $j \in \mathbb{N}$, if $j < i$ then $A[j] = 1$.

Also let $S_n(n)$ be the set of binary arrays that contain no 0’s. For each i, $0 \leq i \leq n$, write an expression for $|S_n(i)|$.

Solution

For $0 \leq i \leq n - 1$, $|S_n(i)| = 2^{n-1-i}$.

Also, $|S_n(n)| = 1$.

(c) Argue that for each $n \in \mathbb{Z}^+$, each binary array of length n is in exactly one set S_i (for some $i \in \{0, \ldots, n\}$).

Use this to show that $\sum_{i=0}^{n} |S_n(i)| = |T_n|$.

Solution

For each input, either it contains a 0 or it doesn’t. If it doesn’t then it is (the single input) in $S_n(n)$. If it does, then we partition these inputs according to the smallest location $i \leq n - 1$ where $A[i] = 0$: if an input has its first 0 in $A[i]$, then it is in the set $S_n(i)$. The sum is $2^{n-1} + 2^{n-2} + \ldots + 1 + 1 = 2^n$.
(d) Let the runtime of the algorithm on a binary list A be the number of executions of the loop. Give an exact expression for the average runtime of the above algorithm using the quantities that you calculated. You should get a summation; do not simplify the summation in this part.

Solution

Note that each input in $S_n(i)$ causes the loop to execute exactly $i+1$ times. So the overall average runtime is:

$$
\frac{1}{2n} \sum_{i=0}^{n} |S_n(i)| \times (i + 1) = \left(\frac{1}{2n} \sum_{i=0}^{n-1} |S_n(i)| \times (i + 1) \right) + \frac{|S_n(n)| \times (n + 1)}{2n} \\
= \left(\frac{1}{2n} \sum_{i=0}^{n-1} 2^{n-1-i} \times (i + 1) \right) + \frac{n + 1}{2n} \\
= \left(\frac{1}{2n} \sum_{i'=1}^{n} i' \times i' \right) + \frac{n + 1}{2n} \quad \text{(change of variable } i' = i + 1) \\
= \left(\sum_{i'=1}^{n} \frac{1}{2} i' \times i' \right) + \frac{n + 1}{2n}
$$

(e) Show that the runtime that you calculated is in $O(1)$. You may use without proof that for all $x \in \mathbb{R}$ such that $|x| < 1$, $\sum_{i=1}^{\infty} ix^i = \frac{x}{(1 - x)^2}$.

Solution

So we have $(n + 1)/2n + \sum_{i'=1}^{n} i'(1/2)^i'$. The first part is eventually less than 1, and by the formula given above, the second part is at most 2. Thus the expected runtime is $\Theta(1)$.