Reminders:

HW3 due Mar 14
Midterm 2: Mar 28/29

Review: from Week 7
O, Ω, Θ
Quick Review

1. $g \in O(f)$ "g is eventually dominated by f, ignoring constant factors"
 $$\exists \eta_0, c \in \mathbb{R}^+ \quad \forall n \geq \eta_0 \quad g(n) \leq c \cdot f(n)$$

2. $g \in \Omega(f)$ "g eventually dominates f, ignoring constant factors"
 $$\exists \eta_0, c \in \mathbb{R}^+ \quad \forall n \geq \eta_0 \quad g(n) \geq c \cdot f(n)$$

3. $g \in \Theta(f)$: $g \in O(f)$ and $g \in \Omega(f)$

② : ③ from tutorial
Growth rates

\[\log_2 n < (\log n)^2 \leq n < n^2 < n^3 \leq 2^n \]

\[n \log n ? \]

Examples

1. \(100n + 5000 \leq O(n^2) \)

 Pick \(n_0 = 5000, c = 101 \) (\(\forall n \geq 5000 \quad 100n + 5000 \leq 101 n^2 \))

 Then \(\forall n \geq 5000 \quad 100n + 5000 \leq 100n \)

 \[5000 \leq n \leq n^2 \quad \text{since} \quad n \geq 5000 \]

 \[100n \leq 100n^2 \]

 \[\therefore 5000 + 100n \leq 100n^2 + n^2 = 101 n^2 \]

2. \(2^n + 50n \leq O(3^n) \)

 Pick \(n_0 = 1, c = 51 \)

 \[n \leq 3^n, 2^n \leq 3^n \]

 \[50n \leq 50 \cdot 3^n, 2^n \leq 3^n \quad \Rightarrow \quad 2^n + 50n \leq 51 \cdot 3^n \]
\[\log_2 n \in \Theta(\log_{10} n) \]

\[2n^2 + \sqrt{n} \in \Theta(?) \]

\[\Theta(n^2) \]

1. \[2n^2 + \sqrt{n} \in O(n^2) \]

2. \[2n^2 + \sqrt{n} \in \Omega(n^2) \]

\[n_0 = 10, \quad c_0 = 3 \]

\[2n^2 + \sqrt{n} \leq 2n^2 + n \leq 3n^2 \]

\[n_0 = 1, \quad c = 1 \]

\[2n^2 + \sqrt{n} \geq n^2 \quad \forall n > n_0 \]
$$100n + 5000 \in \Theta(n)$$

$$\exists n_0, c \quad \forall n \geq n_0 \quad 100n + 5000 \geq c \cdot n$$

$$c = 1$$

$$n_0 = 5000$$

can check

$$\forall n \geq n_0 \quad 100n + 5000 > n$$

$$\therefore \quad 100n + 5000 \in \Theta(n)$$
Theorem
\(f \in O(h), \ g \in O(h) \Rightarrow f + g \in O(h) \)

Theorem
\(f_1 \in O(g_1), \ f_2 \in O(g_2) \Rightarrow f_1 \cdot f_2 \in O(g_1 \cdot g_2) \)

Other useful Facts \(a, b \in \mathbb{N} \)

1. \(a > 1, \ b > 0 \quad \log_a n = \Theta(\log_b n) \)
 \(a > 1, \ b > 0 \quad \log_a n = O(n^b) \)

2. \(a \leq b \quad n^a \in O(n^b) \)

3. \(1 \leq a \leq b \quad a^n \in O(b^n) \)

4. \(\forall n \in \mathbb{N} \quad f(n) \geq 1 \Rightarrow \exists \ f \in \Theta(f) \land \exists \ f \in \Theta(f) \)
Analyzing Runtime of Code

Goal: Find the approximate number of steps that a program takes as a function of input size in the long term.

Runtime $f : \mathbb{N} \rightarrow \mathbb{R}^{\geq 0}$

We will be interested in asymptotic behavior of f.

$i.e. \ f \in \Theta(n^2)$

Why is $f \in \Theta(n^2)$ better than knowing $f \in O(n^2)$ and $f \in \Omega(\log n)$?
How to decide what is a basic step?

- It should not depend on the input size
- Identify blocks of code which can be counted as a single basic step
- Identify loops that cause basic operations to repeat. Count number of repetitions exactly
- Come up with an expression for runtime f
- Use asymptotic notation to find an elementary function g s.t. $f(n) = \Theta(g(n))$

theta is ideal but may not always be possible (more on this later)
Example 1 (Warmup)

def print_sums (list):
 for item1 in list:
 for item2 in list:
 print (item1 + item2)

Let n = length of list
outer loop executes n times
inner loop executes n times

A_{n^2} time * executes \(n^2 \) <= \(\Theta(n^2) \)
The total # A time all line execute 1+n+n^2+n^2 \in \Theta(n^2)
Example 2 (Warmup)

def f(list):
 for item in list:
 for i in range(10):
 print(item + i)

n = size of the list

How many times does * execute
10 * n \(\in \Theta(n) \)

The more careful calculation (total \# of times all lines execute) = 1 + n + 10n + 10n
\(\in \Theta(n) \)
Example 3 Nested Loop

```python
def Nested1(n):
    i = 0
    while i < n:
        j = 0
        while j < n:
            print(i+j)
            j = j + 2
        i = i + 1
```

We will estimate the number of times the inner loop block executes. Work from inside out.

Argue the # of times it executes is $\Theta(\text{total # of steps of algorithm})$.
Example 3

def Nested1(n):
 i = 0
 while i < n:
 j = 0
 while j < n:
 print (i + j)
 j = j + 2
 i = i + 1

When \(i = 0 \)

\((\ast)\) executes \(\left\lceil \frac{n}{2} \right\rceil \) times

\(\hat{c} = 1 \)

\((\ast)\) executes \(\left\lceil \frac{n}{2} \right\rceil \) times

\(i = n - 1 \)

\((\ast)\) executes \(\left\lfloor \frac{n}{2} \right\rfloor \) time

then \((\ast)\) doesn't execute anymore

So total \# \(\# \) executions of \((\ast)\)

is \(n \cdot \left\lceil \frac{n}{2} \right\rceil \)

\(\in \Theta(n^2) \)
Example 3

def Nested1(n):
 i = 0
 while i < n:
 j = 0
 while j < n:
 print (i+j)
 j = j + 2
 i = i + 1

Summary:
1. Every time outer loop executes, inner loop executes \(\frac{n^2}{2} \) time
 (Each execution of inner loop doesn't depend on i)
2. So overall \# executions of inner loop =
 (\# executions per outer loop) \times \frac{n^2}{2}
Example 3

```python
def Nested1(n):
    i = 0
    while i < n:
        j = 0
        while j < n:
            print (i+j)
            j = j + 2
        i = i + 1
```

We could have done a perfect analysis and gotten an exact expression for the steps but it would still be \(\Theta(n^2) \)
So now we want to give a theta expression

\[n \cdot \left\lfloor \frac{n}{2} \right\rfloor \in \Theta(n^2) \]

To prove \(n \cdot \left\lfloor \frac{n}{2} \right\rfloor \in \Theta(n^2) \), need to show

1. \(n \cdot \left\lfloor \frac{n}{2} \right\rfloor \in \mathcal{O}(n^2) \).

 \[\exists n_0 \in \mathbb{N} \exists c \in \mathbb{R}^+ \quad (\forall n \geq n_0 \quad n \cdot \left\lfloor \frac{n}{2} \right\rfloor \leq c \cdot n^2) \]

 Let \(n_0 = 1 \), \(c_0 = 1 \). Check \(\forall n \in \mathbb{N} \) \(n \geq 1 \Rightarrow n \cdot \left\lfloor \frac{n}{2} \right\rfloor \leq n \cdot n = n^2 \)

2. \(n \cdot \left\lfloor \frac{n}{2} \right\rfloor \in \Omega(n^2) \)

 Show \(\exists n_0 \in \mathbb{N} \exists c \in \mathbb{R}^+ \quad \forall n \geq n_0 \quad n \cdot \left\lfloor \frac{n}{2} \right\rfloor \geq c \cdot n^2 \)

 Pick \(c = \frac{1}{2} \), \(n_0 = 1 \)

 \[n \cdot \left\lfloor \frac{n}{2} \right\rfloor \geq n \cdot \frac{n}{2} = \frac{1}{2} \cdot n^2 \]
So now we want to give a theta expression

\[n \cdot \left\lfloor \frac{n^2}{2} \right\rfloor \in \Theta(n^2) \]

To prove \(n \cdot \left\lfloor \frac{n^2}{2} \right\rfloor \in \Theta(n^2) \), need to show

1. \(n \cdot \left\lfloor \frac{n^2}{2} \right\rfloor \in O(n^2) \)

2. \(n \cdot \left\lfloor \frac{n^2}{2} \right\rfloor \in \Omega(n^2) \)
Example 4: Nested loop where loop cost changes

```python
def Nested2(n):
    i = 0
    while i < n:
        j = 0
        while j < i:
            print(i + j)
            j = j + 1
        i = i + 1
```

The outer loop runs from `i = 0` to `i = n-1`. The inner loop runs `j` times, where `j` is equal to `i` at the start of the inner loop.

We will analyze in the same way, but now # q times (*) executes every time outer loop executes depends on `i`
Example 4 Nested loop where loop cost changes

def Nested2(n):
 i=0
 while i<n:
 j=0
 while j<i:
 print (i+j)
 j = j+1
 i=i+1

When outer loop has i set to i, inner loop \(\sum j \) executes \(i \) times.
So overall \# of times \(\sum j \) executes is
\[
0 + 1 + 2 + 3 + \ldots + n-1 \leq \sum \frac{n(n-1)}{2} \]
\[
i=0 \quad i=1 \quad i=2 \quad i=3 \quad \ldots \quad i=n-1 \quad i=0
\]
\[
= \Theta(n^2) \]
Example 4 Nested loop where loop cost changes

def Nested2(n):
 i=0
 while i<n:
 j=0
 while j<i:
 print (i+j)
 j = j+1
 i = i+1

Want to write this in Θ form:

$\sum_{i=0}^{n-1} i = \frac{n \cdot (n-1)}{2} \in \Theta(n^2)$

$\Theta(n^2-n) \in \Theta(n^2)$
Show \[\frac{n(n-1)}{2} \in \Theta(n^2) \]

1. Show \[\frac{n(n-1)}{2} \in \Omega(n^2) \]

\(\exists n_0, c \in \mathbb{R}^+ \forall n \geq n_0 \quad \frac{n(n-1)}{2} \geq c(n^2) \quad n_6 = 3 \)

\[\frac{n(n-1)}{2} \geq \frac{n \cdot (\frac{n}{2})}{2} = \frac{n^2}{4} \]

\[\therefore \forall n \geq n_6, \quad \frac{n(n-1)}{2} \geq \frac{1}{4}n^2 \]

2. Show \[\frac{n(n-1)}{2} \in O(n^2) \]

\[\frac{n(n-1)}{2} \leq \frac{n \cdot n}{2} = n^2 \quad \therefore \forall n \geq 1 \quad \frac{n(n-1)}{2} \leq 1 \cdot n^2 \]
Example 4.1A Nested loop where loop cost changes

def Nested2(n):
 i = 0
 while i < n:
 j = 1
 while j < i
 print(i+j)
 j = 2*j
 i = i+1

We will analyze in the same way, but now # q times (*) executes every time outer loop executes depends on i

\begin{align*}
i = 0 & \quad i = 1 \quad i = 2 \quad \cdots \quad i = k \\
0 & \quad 0 & \quad 1 \quad \vdots \quad \leq \log k
\end{align*}
\[\log 1 + \log 2 + \log 3 + \ldots + \log n \]

\[\log a + \log b = \log (a \cdot b) \]

\[= \log (1 \cdot 2 \cdot 3 \ldots \cdot n) \]
\[= \log (n!) \sim \log (n^n) \]
\[= \log (2^{\log n}) = n \log n \]
Sometimes it isn't possible to get runtime $= \Theta(f)$, for a closed-form expression f.

Ex

Even-or-odd (n)

If n is even

For $i = 1$ to n^2
 print i

If n is odd

For $i = 1$ to n
 print n

For all n Runtime $\in O(n^2)$, $\Omega(n)$
Example 5: Factoring - find a nontrivial factor of n

def factor(n):
 (n ≥ 2)
 d = 2
 while d < n
 if n % d == 0:
 return d + quit
 d = d + 1
 return -1

If n is even \Rightarrow runtime is constant
other extreme n is prime \Rightarrow runtime is n
in between \Rightarrow runtime depends on the smallest prime divides n
so Runtime is $\Omega(1)$, and $O(n)$
It turns out that there is no elementary function f s.t. the runtime of factor is $\Theta(g)$.

But factoring is supposed to be really hard!

The input size is $\log n$, not n.

So to factor a number with 100 digits takes time 2^{100} in worst case, which is terrible.