Week 10 Reminders

Test 2 next week
practise test on webpage

HW4 (cast one!) out early next week

Induction
asymptotic analysis of functions O, Ω, Θ
Runtime analysis of algorithms BC, WC
Now we want to consider algorithms that have multiple inputs of length \(n \).

How to measure runtime?

\[A(n) \]

\[\text{Runtime} \]

\[A=1 \quad A=2 \quad A=3 \]

\[\text{WC}_A(n) \]

\[\text{BC}_A(n) \]
Now we want to consider algorithms that have multiple inputs of length n. How to measure runtime?

$A(n)$

$WC_A(n)$

$BC_A(n)$

$BC_A(n) \in O(g)$

$BC_A(n) \in \Omega(g)$
More formally, to show $\text{WC}_f(n) \leq O(g(n))$:

we have to show

$\exists n_0, c_0 \forall n \geq n_0 \quad \text{WC}_f(n) \leq c_0 \cdot g(n)$

$= \exists n_0, c_0 \forall n \geq n_0 \quad \max \{ \text{Runtime}_f(x) \} \leq c_0 \cdot g(n)$

inputs x of length n

$= \exists n_0, c_0 \forall n \geq n_0 \quad \forall x \quad \left[\text{If } x \text{ has length } n \Rightarrow \text{Runtime}_f(x) \leq c_0 \cdot g(n) \right]$.

In general to prove $\text{WC}_f(n) \leq O(g(n))$ you usually do a static analysis of code.

For $\text{WC}_{\text{has-even}}(n) \leq O(n)$

since $n_0 = 1$, $c_0 = 1$. Argue for any list of length n, the for loop executes at most n times so runtime on all x, $|x| = n$ is n
More formally, to show \(WC_f(n) \leq O(g(n)) \):

We have to show:

\[
\forall n_0, c_0 \quad \forall n \geq n_0 \quad WC_f(n) \leq c_0 \cdot g(n)
\]

\[
= \forall n_0, c_0 \quad \forall n \geq n_0 \quad \left[\max_{x \mid |x| = n} \{ \text{Runtime}_f(x) \} \leq c_0 \cdot g(n) \right]
\]

Similarly to show \(WC_f(n) \leq \Omega(g(n)) \):

We have to show:

\[
\forall n_0, c_0 \quad \forall n \geq n_0 \quad WC_f(n) \geq c_0 \cdot g(n)
\]

\[
= \forall n_0, c_0 \quad \forall n \geq n_0 \quad \left[\max_{x \mid |x| = n} \{ \text{Runtime}_f(x) \} \geq c_0 \cdot g(n) \right]
\]

\[
= \forall n_0, c_0 \quad \forall n \geq n_0 \quad \exists x \quad [|x| = n \land \text{Runtime}_f(x) \geq c_0 \cdot g(n)]
\]
Now to show $\text{BC}_f(n) = O(g(n))$

we have to show

$\exists n_0, c_0 \forall n \geq n_0 \quad \text{BC}_f(n) \leq c_0 \cdot g(n)$

$\exists n_0, c_0 \forall n \geq n_0 \quad \left[\min_{x : |x| = n} \{ \text{Runtime}_f(x) \} \leq c_0 \cdot g(n) \right]$}

To show $\text{BC}_f(n) \in \Omega(g(n))$

we have to show

$\exists n_0, c_0 \forall n \geq n_0 \quad \text{BC}_f(n) = c_0 \cdot g(n)$

$\exists n_0, c_0 \forall n \geq n_0 \quad \left[\min_{x : |x| = n} \{ \text{Runtime}_f(x) \} \geq c_0 \cdot g(n) \right]$}

$\exists n_0, c_0 \forall n \geq n_0 \quad \forall x \left[|x| = n \Rightarrow \text{Runtime}_f(x) \geq c_0 \cdot g(n) \right]$
\[WC_f(n) \in O(g(n)) : \]
\[\exists n_0, c_0 \ \forall n \geq n_0 \ \forall x \ [|x| = n \ \Rightarrow \ \text{Runtime}_f(x) \leq c_0 \cdot g(n)] \]

\[WC_f(n) \in \Omega(g(n)) : \]
\[\exists n_0, c_0 \ \forall n \geq n_0 \ \exists x \ [|x| = n \ \land \ \text{Runtime}_f(x) \geq c_0 \cdot g(n)] \]

\[BC_f(n) \in O(g(n)) : \]
\[\exists n_0, c_0 \ \forall n \geq n_0 \ \exists x \ [|x| = n \ \land \ \text{Runtime}_f(x) \leq c_0 \cdot g(n)] \]

\[BC_f(n) \in \Omega(g(n)) : \]
\[\exists n_0, c_0 \ \forall n \geq n_0 \ \forall x \ [|x| = n \ \Rightarrow \ \text{Runtime}_f(x) \geq c_0 \cdot g(n)] \]
Example 1

\textbf{ALL-EVEN} \ (A)

\[n = \text{len} \ (A) \]

\[
\begin{aligned}
\text{For } i = 1 \text{ to } n \\
\quad \text{If } A[i] = \text{odd} \\
\quad \quad \text{Print } "\text{Not all even}"
\end{aligned}
\]

What is $\text{WC}_{\text{ALL-EVEN}} \ (n)$? $\Theta(n)$

What is $\text{BC}_{\text{ALL-EVEN}} \ (n)$? $\Theta(1)$
Want to show $WC_{\text{ALL-EVEN}}(n) \in \Theta(n)$.

(1.) Show $WC_{\text{ALL-EVEN}}(n) \in O(n)$

Want to show:

$$\exists n_0 \in \mathbb{N} \exists c_0 \in \mathbb{R}^+ \forall n \geq n_0 \forall x$$

$$\text{Runtime}_{\text{ALL-EVEN}}(x) \leq c_0 \cdot n$$

[if x is a list of length n]

Let $n_0 = 1$, $c_0 = 1$. Let $n \geq n_0$.

Let x be a list of length n.

Have to prove this for all inputs lists of length $\geq n_0$, so use static analysis [analysis depends on n but not on the actual input of length n]
We will consider (*) to take one step since it is a constant sized block of code.

I will consider the runtime on x to be the number of executions of the For-loop. Since x has length n, the For-loop executes at most n times.
(2.) Show \(WC_{\text{ALL-EVEN}}(n) \in \Omega(n) \)

Want to show

\[
\exists n_0 \in \mathbb{N}, \forall n \geq n_0 \exists x
\]

\[
[x \text{ is a length } n \text{ list and }
\text{Runtime}_{\text{ALL-EVEN}}(x) \geq c_0 \cdot n]
\]

Let \(n_0 = 1 \), \(c_0 = 1 \). Let \(n \geq n_0 \).

Let \(x \) be the following list of length \(n_0 \)

\[
x[i] = 2, \quad \text{for } i = \{2, \ldots, n \}
\]

The runtime of algorithm on this \(x \) is \(n \) since all entries are even, so loop won't quit early, and it will execute \(n \) times.

Here you must construct an input family, one input for every \(n \geq n_0 \).
i. since $\text{WC}_{\text{ALL-EVEN}}(n) \in O(n)$ and $\in \Omega(n)$

it follows that $\text{WC}_{\text{ALL-EVEN}}(n) \in \Theta(n)$
Want to show $BC_{\text{ALL-EVEN}}(n) \in \Theta(1)$

1. $BC_{\text{ALL-EVEN}}(n) \in \Omega(1)$

Show: $\exists \varepsilon \in \mathbb{C} \forall n \geq n_0 \forall \lambda \in A \times$

(If λ has length n, then $\text{Runtime}_{\text{ALL-EVEN}}(\lambda) \geq \varepsilon$)

Pick $n_0 = \varepsilon_0 = 1$. Let $n = n_0$. Let x be a list of length n.

Any algorithm on any input requires at least one step, so on x this algo requires $\geq \varepsilon = 1$ steps.
\[2 \text{ Show } \mathcal{B}_\text{ALL-EVEN} (n) \leq O(1) \]

Show:

\[\exists n_0 \in \mathbb{N}_0 \text{ s.t. } \forall n \geq n_0 \exists x \]

[x is a list of length \(n \) and Runtime \(f_{\text{ALL-EVEN}} (x) \leq c_0 \]

Let \(n_0 = c_0 = 1 \). Let \(n \geq n_0 \).

Let \(x \) be the following input list of length \(n \):

\[x[i] = 1 \quad i = 1, \ldots, n \]

\(\text{ALL-EVEN} \) on \(x \) will only execute the for-loop once since \(x[1] \) is odd.

So runtime is \(1 \).
Example 2

Alg-FUNNY (n)

If n is even:
For i = 1 to n^2
Print "Funny"

Else
For i = 1 to n
Print "Not funny"

What is the runtime as a function of n?
For any algorithm with only one input \(n \) of a given size, \(n \):

\[
WC_{\text{Alg}}(n) = \max_{x, |x| = n} \text{Runtime}_{\text{Alg}}(x)
\]

\[
BC_{\text{Alg}}(n) = \min_{x, |x| = n} \text{Runtime}_{\text{Alg}}(x)
\]

So

\[
WC_{\text{Alg}}(n) = BC_{\text{Alg}}(n)
\]

\[
= \text{Runtime}_{\text{Alg}}(n)
\]
Runtime of \textsc{Alg-FUNNY}

Runtime n^2

Actual runtime

Runtime $(n) \in \mathcal{O}(n^2)$

\text{Cannot prove a nice Θ bound for this algorithm}
Show \(\text{Runtime}(n) \in O(n^3) \):

For any \(n \), if the "IF" executes,
\[\text{# executions of loop} \leq n^2 \]
if "ELSE" executes instead,
\[\text{# executions of loop} \leq n \]
\[\implies \text{the total # of steps} \leq n^2 \]

Show \(\text{Runtime}(n) \in \Omega(n^3) \):

show \(\exists \theta \geq 0 \) s.t. \(n \geq n_0 \implies \text{Runtime}(n) \geq \theta \cdot n^3 \)

If the "IF" executes, runtime is \(n^2 \)
otherwise if "ELSE" executes, runtime is \(n \)
so no matter what, runtime \((n) \geq n \).
$r_k = j_k - i_k$

Just before kth iteration of loop

\[L = \{2, 5, 6, 7, 9, 10, 15, 20\} \]

\[\text{start: } i_0 = n \]

(b) terminate when $i_k < j_k$

\[j_k = i_k = 0 \]

$n \rightarrow \frac{n}{2} \rightarrow \frac{n}{4} \rightarrow \frac{n}{8} \rightarrow \ldots$
Average case complexity

Between worst-case and best case complexity

Describes the "typical" or average runtime on inputs of length \(n \)

Average case can be surprising

More difficult to analyze in general than WC or BC complexity
Now we want to consider algorithms that have multiple inputs of length n. How to measure runtime?

- $\text{Avg}_{A}(n)$
- $\text{WC}_{A}(n)$
- $\text{BC}_{A}(n)$
To compute the average case runtime of an algorithm, we had to define the set of all inputs of length n.

Let $T_n^A = \text{set of all inputs to algorithm } A$ of length n.

$$\text{Average}_{A}(n) = \frac{\sum_{x \in T_n^A} \text{Runtime}_{A}(x)}{|T_n^A|}$$
Example 1

Input is a list of \(n \) numbers, where each number in the list is in \(\{1,...,n\} \) and each \(i \in \{1,...,n\} \) occurs exactly once. So the input is a permutation of \(1,...,n \).

Ex. if \(n=4 \), a possible input is \(3,1,3,4 \)

\[1,2,3,4 \]

Def Find1(\(L \))

\[n = \text{Len}(L) \]

For \(i = 1 \) to \(n \)

If \(L[i] = 1 \) halt output \(i \)
What is T_n^{finds}?

What is $|T_n^{\text{finds}}|$?

$T_n^{\text{finds}} = \{\text{orderings/permutions of } 1...n\}$

$|T_n^{\text{finds}}| = n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 1$

why?

$\begin{array}{c}
\text{ex} \\
n=3
\end{array}$

$T_3^{\text{finds}} = \{123, 132, 213, 231, 312, 321\}$

n choices

$n-1$ n-2

altogether $n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 1 = n!$
\[n = 3 \]

\[T_{\text{Find1}} \] = \begin{bmatrix}
1 \\
123, 132 \\
2213, 2313 \\
2312, 3213
\end{bmatrix}

Avg runtime area \[T_{\text{Find1}} \]

\[= \frac{1 \cdot 2 + 2 \cdot 2 + 3 \cdot 2}{6} \]

\[= 2 \]

Group all of these inputs: \[T_{1,n}, T_{2,n}, T_{3,n} \]

- \[T_{1,n} = \text{all inputs with } 1 \text{ in 1st position} \]
 \[\text{runtime} \]
 \[\text{runtime} \]

- \[T_{2,n} = \]

- \[T_{3,n} = \]

\[\text{runtime} \]

\[\text{runtime} \]
Average \(F(n) = \sum_{x \in T} \frac{\text{Runtime}(x)}{n!} \)

Example \(n = 4 \):

\[
\begin{align*}
1 & \times 4 \text{ inputs in T with 1 in 1st location} \\
2 & \times 4 \text{ inputs in T with 1 in 2nd location} \\
3 & \times 4 \text{ inputs in T with 1 in 3rd location} \\
4 & \times 4 \text{ inputs in T with 1 in 4th location}
\end{align*}
\]

\[
\begin{align*}
1 & \times 1234 \\
2 & \times 1243 \\
3 & \times 1342 \\
4 & \times 1432
\end{align*}
\]

\(4! \)
\[\frac{3!}{4!} (1+2+3+4) = \frac{1}{4} (1+2+3+4) \]

Now let's do the general case.

Average \(\text{Find}_1(n) = \sum_{x \in T_n} \text{Runtime of } \text{Find}_1 \text{ on } x / n! \)

\[= \sum_{i=1}^{n} i \cdot \left(\# \text{q's in } T_n \text{ with 1 in location } i \right) / n! \]

\[= \left[\sum_{i=1}^{n} i \cdot (n-1) \right] / n! \]

\[= \frac{(n-1)! \sum_{i=1}^{n} i}{n!} = \frac{1}{n} \left(\frac{n \cdot (n+1)}{2} \right) = \frac{n+1}{2} e \cdot \Theta(n) \]
So what did we do?

We found a way to partition all of the inputs in T_n into disjoint "buckets" or subsets, so that

- all inputs in the same bucket had the same runtime
- every input is in exactly one bucket