Chapter 3

Formal Proofs

Bahar Aameri
Department of Computer Science
University of Toronto

Feb 02, 2015
Announcements

- **Term Test 1:**
 - Section **L0101**: Tuesday **Feb 03, 2:10-3:30** Location: **MP203**
 - Section **L0201**: Thursday **Feb 05, 2:10-3:30** Location: **MP103**

- You **must** write the quiz in the section that you are **enrolled** in, unless you have talked to the instructors and they allowed you to switch.

- **Content:** **Chapter 2.** Review lecture and course notes!

- **TA office Hours:**
 - **Monday,** Feb 02, 1-3pm, 4:30-6:30pm in **BA3201**
 - **Wednesday,** Feb 04, 12-2pm, 3:30-5:30pm in **BA3201**
Today’s Topics

- Direct Proof of the Existential
- Proof of Multiple Quantifiers, Implications, and Conjunctions
 - Example of Proving a Statement about a Sequence
 - Example of Disproving a Statement about a Sequence
Chapter 3

Formal Proofs

Direct Proof of the Existential
Direct Proof of the Existential

General Form

- **Prove:** \(\exists x \in D, P(x) \).
- **How to prove:**
 - Find **one** element in \(D \) that **satisfies** \(P \).

Structure for the Direct Proof of Existential

Let \(x = \ldots \) # choose a particular element of the domain
Then \(x \in D \) # this **may be obvious**, otherwise prove it

\[\vdash \text{prove } P(x) \]
Then \(P(x) \) # you’ve shown that \(x \) **satisfies** \(P \)
\(\exists x \in D, P(x) \) # introduce existential
Direct Proof of the Existential

Exercise

- Prove $\exists x \in \mathbb{R}, x^2 + 2x + 1 = 0$.

 Let $x = -1$. # choose a particular element that will work
 Then $x \in \mathbb{R}$. # since $-1 \in \mathbb{R}$
 Then $x^2 + 2x + 1 = (-1)^2 + 2(-1)^2 + 1 = 1 - 2 + 1 = 0$. # substitute -1 for x
 Then $\exists x \in \mathbb{R}, x^2 + 2x + 1 = 0$. # we gave an example, so we introduce existential
Exercise

Prove $\exists x \in \mathbb{Z}, x = -x$.

Let $x = 0$. # choose a particular element that will work
Then $x \in \mathbb{Z}$. # since $0 \in \mathbb{Z}$
Then $x = 0 = -0 = -x$. # substitute 0 for x
Then $\exists x \in \mathbb{Z}, x = -x$. # we gave an example, so we introduce existential
Chapter 3

Formal Proofs

Proof of Multiple Quantifiers, Implications, and Conjunctions
Proving a Statement about a Sequence

• **A₁**: \(a_i = i^2, \ i \in \mathbb{N}. \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_i)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>...</td>
</tr>
</tbody>
</table>

• **C₁**: \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, \ a_j \leq i \implies j < i. \)

Verify if **C₁** is **True** for **A₁**.

• \(i = 0 \): \(a_0 = 0^2 \leq 0, \) but \(0 \ngeq 0. \)
• \(i = 1 \): \(a_1 = 1^2 \leq 1, \) but \(1 \ngeq 1. \)
• \(i = 2 \):
 • \(a_0 = 0^2 \leq 2, \) and \(0 < 2. \)
 • \(a_1 = 1^2 \leq 2, \) and \(1 < 2. \)
 • For all \(j \geq 2, \ a_j = j^2 \not\leq 2. \)
Proving a Statement about a Sequence

\[A_1 : a_i = i^2, \, i \in \mathbb{N}. \]

\[C_1 : \exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i. \]

Prove that \(C_1 \) is True for \(A_1 \).
Reminder: Direct Proof of Universally Quantified Implication

Structure of an Direct Proof

- **Prove** $\forall x \in D, P(x) \Rightarrow Q(x)$
 - Assume $x \in D$. $\# x$ is a typical element of D
 - Assume $P(x)$. $\# x$ has property P, the antecedent
 - Then $Q(x)$. $\#$ the **consequence**!
 - Then $P(x) \Rightarrow Q(x)$. $\#$ assuming antecedent leads to consequent
 - Then $\forall x \in D, P(x) \Rightarrow Q(x)$. $\# x$ was a typical element of D
Reminder: Indirect Proof of Universally Quantified Implication

Structure of an Indirect Proof

- Prove $\forall x \in D, P(x) \Rightarrow Q(x)$

 Assume $x \in D$. # x is a typical element of D
 Assume $\neg Q(x)$. # negation of the consequent!

 :
 Then $\neg P(x)$. # negation of the antecedent!
 Then $\neg Q(x) \Rightarrow \neg P(x)$. # assuming $\neg Q(x)$ leads to $\neg P(x)$
 Then $P(x) \Rightarrow Q(x)$. # implication is equivalent to contrapositive
 Then $\forall x \in D, P(x) \implies Q(x)$. # x was a typical element of D
Proving a Statement about a Sequence

- **A₁**: \(a_i = i^2, i \in \mathbb{N}\).
- **C₁**: \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i\).

Prove that **C₁** is **True** for **A₁**.

Let \(i = 2\). Then \(i \in \mathbb{N}\). \# 2 \in \mathbb{N}

\[\vdash\]

Then \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i\). \# introduce existential
Proving a Statement about a Sequence

- **A₁**: \(a_i = i^2, i \in \mathbb{N} \).
- **C₁**: \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i \).

Prove that **C₁** is True for **A₁**.

Let \(i = 2 \). Then \(i \in \mathbb{N} \). \# \(2 \in \mathbb{N} \)

Assume \(j \in \mathbb{N} \). \# typical element of \(\mathbb{N} \)

\[\vdots \]

Then \(\forall j \in \mathbb{N}, a_j \leq i \implies j < i \). \# introduce universal

Then \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \implies j < i \). \# introduce existential
Proving a Statement about a Sequence

- **A₁**: \(a_i = i^2, i \in \mathbb{N} \).
- **C₁**: \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i \).

Prove that **C₁** is **True** for **A₁**.

Let \(i = 2 \). Then \(i \in \mathbb{N} \). # 2 \(\in \mathbb{N} \)
Assume \(j \in \mathbb{N} \). # typical element of \(\mathbb{N} \)

Then \(a_j \leq 2 \implies j < i \). #
Then \(\forall j \in \mathbb{N}, a_j \leq i \implies j < i \). # introduce universal
Then \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \implies j < i \). # introduce existential
Proving a Statement about a Sequence

- **A_1**: \(a_i = i^2, \ i \in \mathbb{N} \).
- **C_1**: \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i \).

Prove that C_1 is True for A_1.

Let \(i = 2 \). Then \(i \in \mathbb{N} \). # 2 \(\in \mathbb{N} \)
Assume \(j \in \mathbb{N} \). # typical element of \(\mathbb{N} \)

Then \(\neg (j < i) \implies \neg (a_j \leq 2) \). #
Then \(a_j \leq 2 \implies j < i \). # impl. equivalent to contrapos.
Then \(\forall j \in \mathbb{N}, a_j \leq i \implies j < i \). # introduce universal
Then \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \implies j < i \). # introduce existential
Proving a Statement about a Sequence

- **A₁**: \(a_i = i^2, i \in \mathbb{N} \).
- **C₁**: \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i \).

Prove that C₁ is True for A₁.

Let \(i = 2 \). Then \(i \in \mathbb{N} \).
Assume \(j \in \mathbb{N} \).
Assume \(\neg (j < i) \).
Then \(a_j > 2 \).
Then \(\neg (j < i) \implies \neg (a_j \leq 2) \).
Then \(a_j \leq 2 \implies j < i \).
Then \(\forall j \in \mathbb{N}, a_j \leq i \implies j < i \).
Then \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \implies j < i \).
Proving a Statement about a Sequence

- **A_1**: \(a_i = i^2, \ i \in \mathbb{N}\).
- **C_1**: \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i\).

Prove that **C_1** is True for **A_1**.

Let \(i = 2\). Then \(i \in \mathbb{N}\). \(\#\) \(2 \in \mathbb{N}\)

Assume \(j \in \mathbb{N}\). \(\#\) typical element of \(\mathbb{N}\)

Assume \(\neg (j < i)\). \(\#\) antecedent for contrapositive

Then \(j \geq 2\). \(\#\) negation of \(j < i\) when \(i = 2\)

\[\vdots\]

Then \(a_j > 2\). \(\#\)

Then \(\neg (j < i) \implies \neg (a_j \leq 2)\). \(\#\) anteced. leads to conseq.

Then \(a_j \leq 2 \implies j < i\). \(\#\) impl. equivalent to contrapos.

Then \(\forall j \in \mathbb{N}, a_j \leq i \implies j < i\). \(\#\) introduce universal

Then \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \implies j < i\). \(\#\) introduce existential
Proving a Statement about a Sequence

- **A₁**: \(a_i = i^2, i \in \mathbb{N}\).
- **C₁**: \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i\).

Prove that C₁ is True for A₁.

Let \(i = 2\). Then \(i \in \mathbb{N}\). ◾️ 2 ∈ \(\mathbb{N}\)

Assume \(j \in \mathbb{N}\). ◾️ typical element of \(\mathbb{N}\)

Assume \(\neg (j < i)\). ◾️ antecedent for contrapositive

Then \(j \geq 2\). ◾️ negation of \(j < i\) when \(i = 2\)

Then \(a_j = j^2 \geq 2^2 = 4\). ◾️ since \(a_j = j^2\), and \(j \geq 2\)

Then \(a_j > 2\). ◾️ since \(4 > 2\)

Then \(\neg (j < i) \implies \neg (a_j \leq 2)\). ◾️ anteced. leads to conseq.

Then \(a_j \leq 2 \implies j < i\). ◾️ impl. equivalent to contrapos.

Then \(\forall j \in \mathbb{N}, a_j \leq i \implies j < i\). ◾️ introduce universal

Then \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \implies j < i\). ◾️ introduce existential
Proof of Multiple Quantifiers

Structure

- Prove $\forall x \in D, \exists y \in E, P(x, y)$

 Assume $x \in D$. # x is a typical element of D
 Let $y = \underline{\text{[choose a particular element of the domain]}}$. # choose a particular element of the domain
 Then $y \in E$. # this may be obvious, otherwise prove it

 : # prove $P(x, y)$
 Then $P(x, y)$.
 Then $\exists y \in E, P(x, y)$. # introduce existential
 Then $\forall x \in D, \exists y \in E, P(x, y)$. # introduce universal
Proof of Multiple Quantifiers

Structure

- Prove $\exists x \in D, \forall y \in E, P(x, y)$

 Let $x = __\$. # choose a particular element of the domain
 Then $x \in D$. # this may be obvious, otherwise prove it
 Assume $y \in E$. # y is a typical element of E

 : # prove $P(x, y)$
 Then $P(x, y)$.
 Then $\forall x \in D, P(x, y)$. # introduce universal
 Then $\exists y \in E, \forall x \in D, P(x, y)$. # introduce existential
Disproving a Statement about a Sequence

- **A_2**: \(a_0 = 0, a_1 = 0, a_i = a_{i-2} + 1, i \geq 2, i \in \mathbb{N} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>

- **C_2**: \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, j > i \Rightarrow a_j = a_i \).

How to disprove C_2?

Prove \(\neg C_2 \)

- \(\neg C_2 \): \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \)
Disproving a Statement about a Sequence

\[A_2 : a_0 = 0, a_1 = 0, a_i = a_{i-2} + 1, i \geq 2, i \in \mathbb{N} \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>

\[\neg C_2 : \forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \]

Prove that \(C_2 \) is False for \(A_2 \).

Assume \(i \in \mathbb{N} \). # typical element of \(\mathbb{N} \)

Then \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \). # introduction of universal
Disproving a Statement about a Sequence

- **A₂**: \(a_0 = 0, a_1 = 0, a_i = a_{i-2} + 1, i \geq 2, i \in \mathbb{N}\)

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>

- \(\neg C₂ : \forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i\)

Prove that \(C₂\) is **False** for \(A₂\).

Assume \(i \in \mathbb{N}\).
typical element of \(\mathbb{N}\)

Let \(j = \text{___}\). Then \(j \in \mathbb{N}\).

:

Then \(\exists j \in \mathbb{N}, j > i \land a_j \neq a_i\).
introduction of existential

Then \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i\).
introduction of universal
Disproving a Statement about a Sequence

- \(\mathbf{A}_2 \): \(a_0 = 0, a_1 = 0, a_i = a_{i-2} + 1, i \geq 2, i \in \mathbb{N} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>

- \(\neg \mathbf{C}_2 \): \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \)

Prove that \(\mathbf{C}_2 \) is False for \(\mathbf{A}_2 \).

Assume \(i \in \mathbb{N} \). \# typical element of \(\mathbb{N} \)

Let \(j = \) _____. Then \(j \in \mathbb{N} \).

\[\vdots \]

Then \(j > i \land a_j \neq a_i \).

Then \(\exists j \in \mathbb{N}, j > i \land a_j \neq a_i \). \# introduction of existential

Then \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \). \# introduction of universal
Disproving a Statement about a Sequence

- **A₂**: \(a_0 = 0, a_1 = 0, a_i = a_{i-2} + 1, i \geq 2, i \in \mathbb{N} \)

| \(i \) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>

- **¬C₂**: \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \)

Prove that **C₂** is **False** for **A₂**.

Assume \(i \in \mathbb{N} \). \(\# \) typical element of \(\mathbb{N} \)

Let \(j = \text{____} \). Then \(j \in \mathbb{N} \).

\[\vdots \]

Then \(j > i \).

\[\vdots \]

Then \(a_j \neq a_i \).

Then \(j > i \land a_j \neq a_i \). \(\# \) introduction of conjunction

Then \(\exists j \in \mathbb{N}, j > i \land a_j \neq a_i \). \(\# \) introduction of existential

Then \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \). \(\# \) introduction of universal
Disproving a Statement about a Sequence

- **A_2**: \(a_0 = 0, a_1 = 0, a_i = a_{i-2} + 1, i \geq 2, i \in \mathbb{N} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>

- **¬C_2**: \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \)

- **Prove that C_2 is False for A_2.**

Assume \(i \in \mathbb{N} \). # typical element of \(\mathbb{N} \)

Let \(j = i + 2 \). Then \(j \in \mathbb{N} \). # \(i, 2 \in \mathbb{N} \), and \(\mathbb{N} \) is closed under +

Then \(j > i \). # \(2 > 0 \), so \(i + 2 > i \)

\[\vdots \]

Then \(a_j \neq a_i \).

Then \(j > i \land a_j \neq a_i \). # introduction of conjunction

Then \(\exists j \in \mathbb{N}, j > i \land a_j \neq a_i \). # introduction of existential

Then \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \). # introduction of universal
Disproving a Statement about a Sequence

- **A_2**: $a_0 = 0, a_1 = 0, a_i = a_{i-2} + 1, i \geq 2, i \in \mathbb{N}$

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

- **$\neg C_2$**: $\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i$

Prove that C_2 is False for A_2.

Assume $i \in \mathbb{N}$. # typical element of \mathbb{N}

Let $j = i + 2$. Then $j \in \mathbb{N}$. # $i, 2 \in \mathbb{N}$, and \mathbb{N} is closed under $+$

Then $j > i$. # $2 > 0$, so $i + 2 > i$

Then $a_j = a_{i+2} = a_i + 1$ # since $j \geq 2$ and by Def. of A_2

Then $a_j \neq a_i$. # $1 > 0$, so $a_i + 1 > a_i$

Then $j > i \land a_j \neq a_i$. # introduction of conjunction

$\exists j \in \mathbb{N}, j > i \land a_j \neq a_i$. # introduction of existential

Then $\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i$. # introduction of universal
Proof of Conjunction

Structure

- Prove $\forall x \in D, P(x) \land Q(x)$

 Assume $x \in D$. \# x is a typical element of D

 $\vdash \#$ prove $P(x)$
 Then $P(x)$.

 $\vdash \#$ prove $Q(x)$
 Then $Q(x)$.
 Then $P(x) \land Q(x)$. \# introduce conjunction
 Then $\forall x \in D, P(x) \land Q(x)$. \# introduce universal