CSC165 Mathematical Expression and Reasoning for Computer Science

Lisa Yan

Department of Computer Science
University of Toronto

January 28, 2015
Announcements

- **TERM TEST 1:**
 - Time: Tuesday *Feb 03*, 2:10-3:30 Location: MP203
 - Time: Thursday *Feb 05*, 2:10-3:30 Location: MP103
 - **CONTENT:** Chapter 2

- **TA OFFICE HOURS:**
 - Mon., Feb 02, 1-3pm, 4:30-6:30pm in BA3201
 - Wed., Feb 04, 12-2pm, 3:30-5:30pm in BA3201

- **ASSIGNMENT 1:**
 - Due on Friday *Jan 30*, before midnight.
 - **TA OFFICE HOURS for Assignment 1:**
 - Tuesday, Jan 27, 5-7pm in BA3201
 - Thursday, Jan 29, 3:30-5:30pm in BA3201
Topics: How to Prove?

- **Direct Proof**
 - Direct Proof of Universally Quantified Implication
 - Direct Proof of the Existential

- **Indirect Proof**
 - Indirect Proof of Universally Quantified Implication
 - Proof by Contradiction

- Multiple Quantifiers, Implications, and Conjunctions

- Example of Proving a Statement about a Sequence

- Example of Disproving a Statement about a Sequence
Proof

- A **proof** is an argument that is **precise** and logically correct.

Finding a Proof: It is like solving a problem

- **Understand the problem**:
 - Know what is **required**
 - Know what is **given**
 - **Re-state** the problem in your own words;
 - Might help to draw some **diagrams**.

- **Plan solution(s)**:
 - Use **similar** results.
 - Work **backwards**:
 - Solving **simpler versions** of the problem.

- **Carry out your plan**
 - If needed, **repeat** (parts of) the earlier steps.
 - If you are still stuck, identify *exactly* what information/assumptions you require that are missing and find a way to achieve them.

- **Review and verify your solution**
Proof Structure

General Structure of a Typical Proof

- Given a set of ASSUMPTIONS, prove a CLAIM.
 - Start from the assumptions.
 - Derive a logical consequence, based on the assumptions.
 - Add the new consequence to the original set of assumptions.
 - Continue until the claim can be derived from the assumptions.

Prove $P \Rightarrow Q$

- Given P, prove Q:
 - Assume P. # Given assumption
 - Then R_1. # by P or another known fact
 - Then R_2. # by R_1 or another known fact
 - \vdots
 - Then R_n. # by R_{n-1} or another known fact
 - Then Q. # by R_n or another known fact
How to prove?

DIRECT PROOF
- **DIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION**

INDIRECT PROOF
- **INDIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION**
Universally Quantified Implications

Reminder

- \(C_1 : \forall x \in D, p(x) \Rightarrow q(x) \).
- \(p(x) \) is the ANTECEDENT.
- \(q(x) \) is the CONSEQUENCE.
- \(C_1 \) is TRUE iff for all elements in \(D \), whenever \(p(x) \) is TRUE, \(q(x) \) is also TRUE.

How to prove \(\forall x \in D, p(x) \Rightarrow q(x) \)?

- Assume \(x \) is a generic member of \(D \) and \(p(x) \) is TRUE. (ASSUMPTIONS)
- Show that \(q(x) \) is TRUE. (CLAIM)
Direct Proof Structure for Universally Quantified Implications

Prove: $\forall x \in D, p(x) \Rightarrow q(x)$

Assume $x \in D$. # x is a generic element of D

Assume $p(x)$. # x has property p, the antecedent

Then $r_1(x)$. # by $C_1.0$

Then $r_2(x)$. # by $C_1.1$

...$

Then q(x). # by $C_1.n$

Then $p(x) \Rightarrow q(x)$. # assuming antecedent leads to consequent

Then $\forall x \in D, p(x) \Rightarrow q(x)$. # we only assumed x is a generic D

- The EXPLANATION after # is justification for each step.
- The INDENTATION shows the scope of the assumptions.
Indirect Proof of Universally Quantified Implication

Reminder: Contrapositive

- CONTRAPOSITIVE of \(P \Rightarrow Q \): \(\neg Q \Rightarrow \neg P \).
- Contrapositive of an implication is equivalent with the implication.

Indirect Proof of \(\forall x \in D, p(x) \Rightarrow q(x) \)

- \(p(x) \Rightarrow q(x) \) is equivalent with \(\neg q(x) \Rightarrow \neg p(x) \).
- Proving \(\forall x \in D, \neg q(x) \Rightarrow \neg p(x) \), proves \(\forall x \in D, p(x) \Rightarrow q(x) \)
Prove: $\forall x \in D, p(x) \Rightarrow q(x)$

Assume $x \in D$. # x is a typical element of D

Assume $\neg q(x)$. # negation of the CONSEQUENT!

\[\vdots \]

Then $\neg p(x)$. # negation of the ANTECEDENT!

Then $\neg q(x) \Rightarrow \neg p(x)$. # assuming $\neg q(x)$ leads to $\neg p(x)$

Then $p(x) \Rightarrow q(x)$. # implication is equivalent to contrapositive

Then $\forall x \in D, p(x) \Rightarrow q(x)$. # x was a typical element of D
How to prove?

- **DIRECT PROOF**
 - DIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION

- **INDIRECT PROOF**
 - INDIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION
 - PROOF BY CONTRADICTION
To prove $P \Rightarrow Q$, follow this format:

Assume $\neg Q$. # in order to derive a contradiction

\[\vdots \] # some steps leading to a contradiction, say $\neg P$

Then $\neg P$. # contradiction, since P is known to be true

Then Q. # since assuming $\neg Q$ leads to contradiction
Proof by Contradiction: Example

Prove: there are infinitely many prime numbers.

Restate the problem: naming sets/predicates for this proof

- $P = \{p \in \mathbb{N} : p \text{ has exactly two factors}\}$
- $SP: \forall n \in \mathbb{N}, |P| > n$
Proof by Contradiction: Example

Proof by Contradiction: $\neg SP$:

Assume $\neg SP$: $\exists n \in \mathbb{N}, |P| \leq n$. # to derive a contradiction

Then there is a finite list, p_1, \ldots, p_k of elements of P.
at most n elements in the list

Then I can take the product $p' = p_1 \times \cdots \times p_k$.
finite products are well-defined

Then p' is the product of some natural numbers 2 and greater.
0, 1 aren’t primes, 2, 3 are

Then $p' > 1$. # p' is at least 6

Then $p' + 1 > 2$. # add 1 to both sides

Then $\exists p \in P, p$ divides $p' + 1$.
every integer > 2 (such as $p' + 1$) has a prime divisor

Let $p_0 \in P$ be such that p_0 divides $p' + 1$.
instantiate existential

Then p_0 is one of p_1, \ldots, p_k. # by assumption, the only primes

Then p_0 divides $p' + 1 - p' = 1$. # a divisor of each term divides difference

Then $1 \in P$. Contradiction! # 1 is not prime

Then SP. # “assume $\neg SP$” leads to a contradiction
How to prove?

- **Direct Proof**
 - Direct Proof of Universally Quantified Implication
 - Direct Proof of the Existential

- **Indirect Proof**
 - Indirect Proof of Universally Quantified Implication
 - Proof by Contradiction
Direct proof structure of the existential

The general form for a direct proof of $\exists x \in D, p(x)$ is:

Let $x = \ldots$ # choose a particular element of the domain
Then $x \in D$. # this may be obvious, otherwise prove it

\[\vdash \# \text{ prove } p(x) \]

Then $p(x)$. # you’ve shown that x satisfies p
$\exists x \in D, p(x)$. # introduce existential
How to prove?

- **DIRECT PROOF**
 - **DIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION**
 - **DIRECT PROOF OF THE EXISTENTIAL**

- **INDIRECT PROOF**
 - **INDIRECT PROOF OF UNIVERSALLY QUANTIFIED IMPLICATION**
 - **PROOF BY CONTRADICTION**

- **MULTIPLE QUANTIFIERS, IMPLICATIONS, AND CONJUNCTIONS**
Proof Structure for Multiple quantifiers, implications, and conjunctions:

Consider $\forall x \in D, \exists y \in D, p(x, y)$. The corresponding proof structure is:

Assume $x \in D$. # typical element of D

Let $y_x = \ldots$ # choose an element that works

\[\vdots \]

Then $y_x \in D$. # verify that $y \in D$

\[\vdots \]

Then $p(x, y_x)$. # y satisfies $p(x, y)$

Then $\exists y, p(x, y)$. # introduce existential

Then $\forall x \in D, \exists y \in D, p(x, y)$. # introduce universal
Example: suppose a function f, constants a and l, and the following statement

$$\forall e \in \mathbb{R}, e > 0 \Rightarrow (\exists d \in \mathbb{R}, d > 0 \land (\forall x \in \mathbb{R}, 0 < |x - a| < d \Rightarrow |f(x) - l| < e))$$

Direct proof: structure of the proof to prove this TRUE

Assume $e \in \mathbb{R}$. # typical element of \mathbb{R}
Assume $e > 0$. # antecedent
Let $d_e = \ldots$ # something helpful, probably depending on e
Then $d_e \in \mathbb{R}$. # verify d_e is in the domain
Then $d_e > 0$. # show d_e is positive
Assume $x \in \mathbb{R}$. # typical element of \mathbb{R}
Assume $0 < |x - a| < d_e$. # antecedent

\[\vdots\]
Then $|f(x) - l| < e$. # inner consequent
Then $0 < |x - a| < d_e \Rightarrow (|f(x) - l| < e)$. # introduce implication
Then $\forall x \in \mathbb{R}, 0 < |x - a| < d_e \Rightarrow (|f(x) - l| < e)$. # introduce universal
Then $\exists d \in \mathbb{R}, d > 0 \land (\forall x \in \mathbb{R}, 0 < |x - a| < d \Rightarrow (|f(x) - l| < e))$. # introduce existential
Then, $e > 0 \Rightarrow (\exists d \in \mathbb{R}, d > 0 \land (\forall x \in \mathbb{R}, 0 < |x - a| < d \Rightarrow (|f(x) - l| < e)))$. Then $\forall e \in \mathbb{R}, e > 0 \Rightarrow (\exists d \in \mathbb{R}, d > 0 \land (\forall x \in \mathbb{R}, 0 < |x - a| < d \Rightarrow (|f(x) - l| < e))).$
Multiple quantifiers, implications, and conjunctions: Example

Example: suppose a function f, constants a and l, and the following statement

$$\forall e \in \mathbb{R}, \, e > 0 \Rightarrow (\exists d \in \mathbb{R}, \, d > 0 \land (\forall x \in \mathbb{R}, \, 0 < |x - a| < d \Rightarrow |f(x) - l| < e))$$

Prove by contradiction: negate the statement

$$\neg((\forall e \in \mathbb{R}, \, e \leq 0 \lor (\exists d \in \mathbb{R}, \, d > 0 \land (\forall x \in \mathbb{R}, \, \neg(0 < |x - a| < d) \lor |f(x) - l| < e))))$$

$$\exists e \in \mathbb{R}, \, e > 0 \land (\forall d \in \mathbb{R}, \, d > 0 \Rightarrow (\exists x \in \mathbb{R}, \, 0 < |x - a| < d \land |f(x) - l| \geq e))$$
How to prove?

- **Direct Proof**
 - Direct Proof of Universally Quantified Implication
 - Direct Proof of the Existential

- **Indirect Proof**
 - Indirect Proof of Universally Quantified Implication
 - Proof by Contradiction

- **Multiple quantifiers, implications, and conjunctions**

- **Example of proving a statement about a sequence**
Consider the statement to prove it:

\[\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i \] and the sequence: (A1) 0, 1, 4, 9, 16, 25, …

Going back to our proof structure, we have:

Let \(i = _ \). Then \(i \in \mathbb{N} \).

Assume \(j \in \mathbb{N} \). # typical element of \(\mathbb{N} \)
 Assume \(a_j \leq i \).

\[
\vdots
\]

Then \(j < i \).
Example of proving a statement about a sequence

Consider the statement to prove it:

\[\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i \] and the sequence: (A1) 0, 1, 4, 9, 16, 25, …

Thoughts:

we decide that setting \(i = 2 \) is a good idea, since then \(a_j \leq i \) is only true for \(j = 0 \) and \(j = 1 \), and these are smaller than 2.

Also, here, the contrapositive, \(\neg(j < i) \Rightarrow \neg(a_j \leq a_i) \) is easier to work with.

Let \(i = 2 \). Then \(i \in \mathbb{N} \). # 2 \(\in \mathbb{N} \)

Assume \(j \in \mathbb{N} \). # typical element of \(\mathbb{N} \)

Assume \(\neg(j < i) \). # antecedent for contrapositive

Then \(j \geq 2 \). # negation of \(j < i \) when \(i = 2 \)

Then \(a_j = j^2 \geq 2^2 = 4 \). # since \(a_j = j^2 \), and \(j \geq 2 \)

Then \(a_j > 2 \). # since \(4 > 2 \)

Then \(\neg(j < i) \Rightarrow \neg(a_j \leq a_i) \). # assuming antecedent leads to consequent

Then \(a_j \leq 2 \Rightarrow j < i \). # implication equivalent to contrapositive

Then \(\forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i \). # introduce universal

Then \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i \). # introduce existential
Topics: How to Prove?

- Direct Proof
 - Direct Proof of Universally Quantified Implication
 - Direct proof of the existential

- Indirect Proof
 - Indirect Proof of Universally Quantified Implication
 - Proof by Contradiction

- Multiple quantifiers, implications, and conjunctions

- Example of proving a statement about a sequence

- Example of disproving a statement about a sequence
Example of disproving a statement about a sequence

Consider the statement to disprove it:

$$\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, j > i \Rightarrow a_j = a_i$$

and the sequence: (A2) 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, …

Disprove it: simply prove the negation:

$$\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i$$

Sketch in the outline of the proof:

Assume $i \in \mathbb{N}$.

Let $j = i + 2$. Then $j \in \mathbb{N}$.

Then $j > i \land a_j \neq a_i$.

Then $\exists j \in \mathbb{N}, j > i \land a_j \neq a_i$.

Then $\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i$.

introduction of existential

introduction of universal