Review

Chapter 4

Bahar Aameri
Department of Computer Science
University of Toronto

Mar 31, 2015
Announcements

- **Additional Instructor Office Hours (Bahar):**
 - **Apr 01**, 12-1pm, BA3201
 - **Apr 08**, Time and location TBA.

- **Additional TA Office Hours:**
 - **Mar 30**, 4-6pm, BA3201
 - **Mar 31**, 4-6pm, BA3201
 - **Apr 01**, 1-3pm, BA2230
 - More to be announced!
The Final Exam

- **Content and Duration:**
 - Chapters 1.5, 2, 3, 4 (excluding Sections 4.2 and 4.3)
 - 3 Hours

- **Aid Sheet:**
 - *No* Aids are allowed
 - BUT, we will provide an **Aid Sheet**

- **The Aid Sheet will include:**
 - Derivation rules, *excluding* the following rules: Contrapositive, Implication, Equivalence, Double Negation, DeMorgan’s, Implication Negation, Equivalence Negation, Quantifier Negation.
 - Definitions of Big-\mathcal{O}, Big-Ω, Big-Θ
 - Definitions of limit in the regular case and in the case when the limit is infinity.
The Final Exam

- **General Advise:**
 - Review the course notes.
 - Review the lectures notes.
 - Review all tutorial exercises and quizzes.
 - Review all your assignments and tests, identify where you made a mistake and find out why, review the sample solutions.
 - Do the exercises posted on the course website, and past exams.
Today’s Topics

- Disproving Bounds for Functions
- Algorithm Analysis
- Induction
Disproving Upper Bound using Limits

Reminder: Big-O

- $f \in O(g)$:
 \[\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \leq c \cdot g(n) \]

- $f \not\in O(g)$:
 \[\forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \land f(n) > c \cdot g(n) \]

Reminder: Special Case of Limits

- $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$ \[\iff \forall \varepsilon \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n' \Rightarrow \frac{f(n)}{g(n)} > \varepsilon \]
Disproving Upper Bound using Limits

Reminder: Special Case of Limits

- \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \)
 \[\iff \forall c \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n' \implies f(n) > c.g(n) \]

- \(\forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \land f(n) > c.g(n) \)

Assume \(c \in \mathbb{R}^+ \), assume \(B \in \mathbb{N} \). # arbitrary values

Then \(\exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n' \implies f(n) > c.g(n) \). # definition of

\(\lim_{n \to \infty} f(n)/g(n) = \infty \)

Let \(n_1 \) be such that \(\forall n \in \mathbb{N}, n \geq n_1 \implies f(n) > c.g(n) \). # instantiate \(n' \)

Let \(n_0 = \max(B, n_1) \). Then \(n_0 \in \mathbb{N} \).

Then \(n_0 \geq B \). # by definition of max

Then \(f(n_0) > c.g(n_0) \). # by the assumption above \(f(n) > c.g(n) \),

since \(n_0 \geq n_1 \)

Then \(n_0 \geq B \land f(n_0) \geq c.g(n_0) \). # introduce \(\land \)

Then \(\exists n \in \mathbb{N}, n \geq B \land f(n) > c.g(n) \) # introduce \(\exists \)

Then \(\forall c \in \mathbb{R}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \land f(n) > c.g(n) \) # introduce \(\forall \)
Disproving Upper Bound using Limits

Disproving Big-\mathcal{O}

- Show that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.
- Use the proof in the previous slide to show that $f \notin \mathcal{O}(g)$.
Disproving Lower Bounds

Reminder: Big-Ω

- $f \in \Omega(g)$:
 \[\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \geq c \cdot g(n) \]

- $f \notin \Omega(g)$:
 \[\forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \land f(n) < c \cdot g(n) \]

Reminder: Limits

- $\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$
 \[\iff \forall \varepsilon \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n' \Rightarrow L - \varepsilon < \frac{f(n)}{g(n)} < L + \varepsilon \]

- $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
 \[\iff \forall \varepsilon \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n' \Rightarrow -\varepsilon < \frac{f(n)}{g(n)} < \varepsilon \]
Algorithm Analysis

Proving a Tight Bound $W(n)$ for Worst-case Running Time

- Give an expression $U(n)$ which represents an overestimate of the worst-case running time.
- Give an specific case such that the corresponding running time function $L(n)$ is in $\Omega(W)$.
- Prove $L \in \Omega(W)$ and $U \in O(W)$
Algorithm Analysis

\[1 + n + n + 4n + 3n + 3n + n = 13n + 1 \]

```python
def mystery2(L):
    ''' L is a non-empty list of length len(L) = n. '''
    i = 1  # line 1
    while i < len(L) - 1:  # line 2
        j = i - 1  # line 3
        while j <= i + 1:  # line 4
            L[j] = L[j] + L[i]  # line 5
            j = j + 1  # line 6
        i = i + 1  # line 7
```

Mathematical Expression and Reasoning
Algorithm Analysis

2 + n + 1 + n + n^2 + n + 2n^2 + n^3 + n^2 + 2n^3 + 3n^2 + n + 1 = 4 + 4n + 7n^2 + 3n^3

Running Time Analysis for Maximum Sum (MS)

- **Claims**: \(T_{MS} \in \mathcal{O}(n^3) \)

```python
def max_sum(L):
    # To generate all non-empty slices [i:j] for list L, i must
    # take on values from 0 to len(L)-1, and j must take on
    # values from i+1 to len(L).
    max = 0
    # line 1
    i = 0
    # line 2
    while i < len(L):
        # line 3
        j = i + 1
        # line 4
        while j <= len(L):
            # line 5
            sum = 0
            # line 6
            k = i
            # line 7
            while k < j:
                # line 8
                sum = sum + L[k]
                # line 9
                k = k + 1
                # line 10
            # Compute the sum of L[i:j].
            if sum > max:
                # line 11
                max = sum
                # line 12
            # Update max if appropriate.
            j = j + 1
            # line 13
            i = i + 1
            # line 14
        # At this point, we’ve examined every slice.
    return max
    # line 15
```

Mathematical Expression and Reasoning
Algorithm Analysis

Running Time Analysis for Maximum Sum (MS)

- **Claims:** $T_{MS} \in \Omega(n^3)$

```python
def max_sum(L):
    # To generate all non-empty slices [i:j] for list L, i must
    # take on values from 0 to len(L)-1, and j must take on
    # values from i+1 to len(L).
    max = 0  # line 1
    i = 0    # line 2
    while i < len(L):  # line 3
        j = i + 1  # line 4
        while j <= len(L):  # line 5
            # Compute the sum of L[i:j].
            sum = 0  # line 6
            k = i  # line 7
            while k < j:  # line 8
                sum = sum + L[k]  # line 9
                k = k + 1  # line 10
            # Update max if appropriate.
            if sum > max:  # line 11
                max = sum  # line 12
                j = j + 1  # line 13
                i = i + 1  # line 14
        # At this point, we’ve examined every slice.
        return max  # line 15
```

We only consider the first 1/3 iteration of the loop over i.
Proof by Induction

Prove $\forall n \in \mathbb{N} \setminus S, P(n)$

- Prove the **Base Case**, $P(b)$.
- Assume $P(n)$ (**Induction Hypothesis**), and prove $P(n + 1)$.

Mathematical Expression and Reasoning 14
Proof by Induction

An Easy Exercise

- Show that \(1 + 2 + \ldots + n = \frac{n(n+1)}{2}\)