Review

Chapter 4

Bahar Aameri
Department of Computer Science
University of Toronto

Mar 30, 2015
Announcements

- **Additional Review Session**: Tues, Mar 31, **2-3:45pm** in **MP203**.

- **Additional Instructor Office Hours** (Bahar):
 - Mar 30, 2-4pm, BA3201
 - Apr 01, 12-1pm, BA3201
 - Apr 08, Time and location TBA.

- **Additional TA Office Hours**:
 - Mar 30, 4-6pm, BA3201
 - Mar 31, 4-6pm, BA3201
 - More to be announced!
Proving Bounds for Functions
Review: Asymptotic Notation

Reminder: Big-Oh

- \(f \in O(g) \): \(g \) is an **upper bound** of \(f \).
 - For sufficiently large values of \(n \), \(g(n) \) multiply by a constant is always greater than \(f(n) \).

\[\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \leq c \cdot g(n) \]

Reminder: Limits

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} = L \]
\[\iff \forall \varepsilon \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n' \Rightarrow L - \varepsilon < \frac{f(n)}{g(n)} < L + \varepsilon \]

\(c = L + 3 \implies c > L \)
Proving Bounds for Polynomial Expressions

Proving O using Limits

Prove $f \in O(g)$

1. $\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$

2. $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

3. $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ does NOT exist.
Proving \(\mathcal{O} \) using Limits

- Suppose \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = L \).

- Prove \(f \in \mathcal{O}(g) \):
 1. Choose any value larger than \(L \) for \(c \).
 2. Assume \(f(n) \leq cg(n) \). Find a value for \(n \) such that the inequality holds.
 3. \(B \) must be larger than or equal to that value.
Proving Bounds for Polynomial Expressions

Suppose \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \).

Prove \(f \in O(g) \):

1. Assume \(c = 1 \).
2. Assume \(f(n) \leq cg(n) \). Find a value for \(n \) such that the inequality holds.
3. \(B \) must be larger than or equal to that value.
Proving Bounds for Polynomial Expressions

Proving O using Limits

- Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ does NOT exist.

- Prove $f \in O(g)$:
 1. Find a function $h(n)$ such that $\lim_{n \to \infty} h(n)$ exists, and $\frac{f(n)}{g(n)} \leq h(n)$ for a sufficiently large value n_1 of n.
 2. Choose a value for c such that $c > \lim_{n \to \infty} h(n)$.
 3. Assume $f(n) \leq cg(n)$. Find a value n_2 for n such that the inequality holds.
 4. B must be larger than or equal to $\max(n_1, n_2)$.
Review: Asymptotic Notation

Reminder: Big-Ω

- $f \in \Omega(g)$: g is an **lower bound** of f.
 - For sufficiently large values of n, $g(n)$ multiply by a constant is always **less than** $f(n)$.

- $\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \geq c.g(n)$

Reminder: Limits

- $\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$
 - \iff
 - $\forall \varepsilon \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n' \Rightarrow L - \varepsilon < \frac{f(n)}{g(n)} < L + \varepsilon$

$C = L - \varepsilon \Rightarrow C < L$
Proving Bounds for Polynomial Expressions

Proving Ω using Limits

Prove $f \in \Omega(g)$

1. $\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$

2. $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

3. $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ does NOT exist.
Proving Bounds for Polynomial Expressions

Proving Ω using Limits

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = L$.

Prove $f \in \Omega(g)$:
1. Choose any positive value less than L for c.
2. Assume $f(n) \geq cg(n)$. Find a value for n such that the inequality holds.
3. B must be larger than or equal to that value.
Proving Bounds for Polynomial Expressions

Proving Ω using Limits

Suppose $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Prove $f \in \Omega(g)$:
1. Assume $c = 1$.
2. Assume $f(n) \geq cg(n)$. Find a value for n such that the inequality holds.
3. B must be larger than or equal to that value.
Proving Bounds for Polynomial Expressions

Proving \(\Omega \) using Limits

- Suppose \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) does NOT exist.

Prove \(f \in \Omega(g) \):

1. Find a function \(h(n) \) such that \(\lim_{n \to \infty} h(n) \) exists, and \(h(n) \leq \frac{f(n)}{g(n)} \) for a sufficiently large value \(n_1 \) of \(n \).

2. Choose a value for \(c \) such that \(c < \lim_{n \to \infty} h(n) \).

3. Assume \(f(n) \geq cg(n) \). Find a value \(n_2 \) for \(n \) such that the inequality holds.

4. \(B \) must be larger than or equal to \(\max(n_1, n_2) \).
Review: Asymptotic Notation

Big-Theta

- \(f \in \Theta(g) \): \(g \) is a **tight bound** of \(f \).
 - For sufficiently large values of \(n \), \(g(n) \) is both an **upper bound** and a **lower bound** for \(f(n) \).

- \(\exists c_1 \in \mathbb{R}^+, \exists c_2 \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_1.g(n) \leq f(n) \leq c_2.g(n) \)

Proving Big-Theta

- Find \(c_1 \) and \(B_1 \) such that
 \[
 \exists c_1 \in \mathbb{R}^+, B_1 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B_1 \Rightarrow c_1.g(n) \leq f(n)
 \]

- Find \(c_2 \) and \(B_2 \) such that
 \[
 \exists c_2 \in \mathbb{R}^+, B_2 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B_2 \Rightarrow f(n) \leq c_2.g(n)
 \]

- Then \(B = \max(B_1, B_2) \).