ANALYSE A SORTING ALGORITHM
Insertion sort

➔ grow a sorted list inside an unsorted list
➔ in each iteration
 - remove an element from the unsorted part
 - insert it into the correct position in the sorted part

Insertion sort

```python
def IS(A):
    '''sort the elements in A in non-decreasing order'''
    i = 1
    while i < len(A):
        t = A[i]  # take red square out
        j = i
        while j > 0 and A[j-1] > t:
            j = j - 1
        A[j] = t  # put red square in
        i = i + 1  # next element to be red-squared
```

n: size of A

1. $i=1...n-1$, that’s $n-1$ iterations, + 1 final loop guard

2. while $i < \text{len}(A)$:
3. $t = A[i]$ # take red square out
4. $j = i$
5. while $j > 0$ and $A[j-1] > t$:
7. $j = j - 1$
8. $A[j] = t$ # put red square in
9. $i = i + 1$ # next element to be red-squared

$j=i, \ldots, 1$, in worst case that’s i iterations, +1 final loop guard,

total lines to run: $3i + 1$

each iteration has $(3i + 1) + 5$ lines to execute
Insertion sort

```python
def IS(A):
    '''sort the elements in A in non-decreasing order'''

    i = 1
    i=1...n-1, that’s n-1 iterations, + 1 final loop check

    while i < len(A):
        t = A[i]  # take red square out

        j = i
        # j=i, ..., 1, in worst case
        # that’s i iterations,
        # +1 final loop guard,
        # total lines to run: 3i + 1

        while j > 0 and A[j-1] > t:

            j = j - 1

        A[j] = t  # put red square in

    i = i + 1  # next element to be red-squared
```

each iteration has (3i + 1) + 5 lines to execute
Insertion sort worst-case running time

\[W_{IS}(n) = 1 + 1 + \sum_{i=1}^{n-1} [(3i + 1) + 5] \]

\[= 2 + \sum_{i=1}^{n-1} (3i + 6) = 2 + 6(n - 1) + 3 \sum_{i=1}^{n-1} i \]

\[= 6n - 4 + 3 \cdot \frac{n(n - 1)}{2} \]

\[= \frac{3}{2} n^2 + \frac{9}{2} n - 4 \]
Prove the worst case complexity of insertion sort is \(O(n^2) \)

\[
W_{IS}(n) = \frac{3}{2}n^2 + \frac{9}{2}n - 4 \in O(n^2)
\]

\(\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow W_{IS}(n) \leq cn^2 \)

Proof:

Pick \(c = 6 \)

Pick \(B = 1 \)

Assume \(n \in \mathbb{N} \)

Assume \(n \geq 1 \)

\[
\text{then } \frac{3}{2}n^2 + \frac{9}{2}n - 4 \leq 6n^2
\]

\[
\text{then } n \geq B \Rightarrow W_{IS}(n) \leq cn^2
\]

\[
\text{then } \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow W_{IS}(n) \leq cn^2
\]
Prove \(W_{IS}(n) = \frac{3}{2}n^2 + \frac{9}{2}n - 4 \in \Omega(n^2) \)

\[\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow W_{IS}(n) \geq cn^2 \]

Proof:

Pick \(c = \frac{3}{2} \)

Pick \(B = 1 \)

Assume \(n \in \mathbb{N} \)

Assume \(n \geq 1 \)

then \[\frac{3}{2}n^2 + \frac{9}{2}n - 4 \geq \frac{3}{2}n^2 + \frac{9}{2} \times 1 - 4 = \frac{3}{2}n^2 + \frac{1}{2} \]

\[\geq \frac{3}{2}n^2 \]

then \(n \geq B \Rightarrow W_{IS}(n) \geq cn^2 \)

then \(\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow W_{IS}(n) \geq cn^2 \)
Complexity Analysis

The worst case time complexity of insertion sort is in $O(n^2)$ and in $\Omega(n^2)$, i.e., it’s in $\Theta(n^2)$
Summary

- we first derived the exact form of $W_{Is}(n)$, then determined it’s upper and lower bounds