CSC148 winter 2018
binary trees
week 8

Danny Heap
heap@cs.toronto.edu / BA4270 (behind elevators)
http://www.teach.cs.toronto.edu/~csc148h/winter/
416-978-5899

March 2, 2018
Outline

general trees continued...

binary trees

traversals

binary search trees
You may have noticed in the last slide there were no recursive calls, and a queue was used to process a recursive structure in level order.

Careful use of a stack allows you to process a tree in preorder.
tree inheritance issues

one approach to BinaryTree would be to make it a subclass of Tree, but there are some design considerations

- any client code that uses Tree would be required not to violate the branching factor (2) of BinaryTree

- one way to achieve this would be to make Tree immutable: make sure there is no way to change children or value, and then have subclasses that might be mutable

we will take a different approach: a completely separate BinaryTree class
BTNode

Change our generic Tree design so that we have two named children, left and right, and can represent an empty tree with None.

class BTNode:

 A Binary Tree, i.e. arity 2.

def __init__(self, value: object,
 left: Union["BTNode", None]=None,
 right: Union["BTNode", None]=None) -> None:

 Create BTNode self with value and children left and right.

 self.value, self.left, self.right = value, left, right
We’ll want the standard special methods:

- `__eq__`
- `__str__`
- `__repr__`
contains

you’ve implemented contains on linked lists, nested Python lists, general Trees before; implement this function, then modify it to become a method

```python
def contains(node: BTNode, value: object) -> bool:
    
    Return whether tree rooted at node contains value.

>>> contains(None, 5)
False
>>> contains(BTNode(5, BTNode(7), BTNode(9)), 7)
True

```
Binary arithmetic expressions can be represented as binary trees:
evaluating a binary expression tree

- there are no empty expressions
- if it’s a leaf, just return the value
- otherwise...
 - evaluate the left tree
 - evaluate the right tree
 - combine left and right with the binary operator

Python built-in `eval` might be handy.
A recursive definition:

- visit the left subtree \textit{inorder}
- visit this node itself
- visit the right subtree \textit{inorder}

The code is almost identical to the definition.
preorder

- visit this node itself
- visit the left subtree in **preorder**
- visit the right subtree in **preorder**
postorder

- visit the left subtree in postorder
- visit the right subtree in postorder
- visit this node itself
level order

- visit root
- visit root’s children
- visit root’s grandchildren
- visit root’s greatgrandchildren
- ...
Add ordering conditions to a binary tree:

- data are comparable
- data in left subtree are less than node.data
- data in right subtree are more than node.data
why binary search trees?

Searches that are directed along a single path are efficient:
- a BST with 1 node has height 1
- a BST with 3 nodes may have height 2
- a BST with 7 nodes may have height 3
- a BST with 15 nodes may have height 4
- a BST with \(n \) nodes may have height \(\lceil \lg n \rceil \).
If node is the root of a “balanced” BST, then we can check whether an element is present in about \(\lg n \) node accesses.

```python
def bst_contains(node: BTNode, value: object) -> bool:
    
    Return whether tree rooted at node contains value.

    Assume node is the root of a Binary Search Tree

    >>> bst_contains(None, 5)
    False
    >>> bst_contains(BTNode(7, BTNode(5), BTNode(9)), 5)
    True
    
    # use BST property to avoid unnecessary searching
```
def insert(node: BTNode, data: object) -> BTNode:

 Insert data in BST rooted at node if necessary, and return new root.

 Assume node is the root of a Binary Search Tree.

 >>> b = BTNode(8)
 >>> b = insert(b, 4)
 >>> b = insert(b, 2)
 >>> b = insert(b, 6)
 >>> b = insert(b, 12)
 >>> b = insert(b, 14)
 >>> b = insert(b, 10)
 >>> print(b)

 14
 12
 10
 8
 6
 4
 2