recursion, natural and otherwise
structure to organize information
patriarchal family tree...
terminology

- set of nodes (possibly with values or labels), with directed edges between some pairs of nodes

- One node is distinguished as root

- Each non-root node has exactly one parent.

- A path is a sequence of nodes n_1, n_2, \ldots, n_k, where there is an edge from n_i to n_{i+1}. The length of a path is the number of edges in it

- There is a unique path from the root to each node. In the case of the root itself this is just n_1, if the root is node n_1.

- There are no cycles — no paths that form loops.
more terminology

- **leaf**: node with no children

- **internal node**: node with one or more children

- **subtree**: tree formed by any tree node together with its descendants and the edges leading to them.

- **height**: $1 +$ the maximum path length from the root to some leaf.

- **depth**: length of a path from root to a node is the node’s depth.

- **arity, branching factor**: maximum number of children for any node.
class Tree:
 """
 A bare-bones Tree ADT that identifies the root with the entire tree
 """
 def __init__(self, value: object=None,
 children: List[Tree]=None) -> None:
 """
 Create Tree self with content value and 0 or more children
 """
 self.value = value
 # copy children if not None
 self.children = children[:] if children are not None else []
general form of recursion:

if ⟨condition to detect a base case⟩:

 ⟨do something without recursion⟩

else: # ⟨general case⟩

 ⟨do something that involves recursive call(s)⟩
def leaf_count(t: Tree) -> int:
 ""
 Return the number of leaves in Tree t.
 ""

>>> t = Tree(7)
>>> leaf_count(t)
1
>>> t = descendants_from_list(Tree(7),
 [0, 1, 3, 5, 7, 9, 11, 13], 3)
>>> leaf_count(t)
6
""
def height(t: Tree):
 ""
 Return 1 + length of longest path of t.
 ""

>>> t = Tree(13)
>>> height(t)
1
>>> t = descendants_from_list(Tree(13),
 [0, 1, 3, 5, 7, 9, 11, 13], 3)
>>> height(t)
3
"""
1 more edge than the maximum height of a child, except
what do we do if there are no children?
Arity, or branching factor

def arity(t: Tree) -> int:

 """
 Return the maximum branching factor (arity) of Tree t.
 """

 >>> t = Tree(23)
 >>> arity(t)
 0
 >>> tn2 = Tree(2, [Tree(4), Tree(4.5), Tree(5), Tree(5.75)])
 >>> tn3 = Tree(3, [Tree(6), Tree(7)])
 >>> tn1 = Tree(1, [tn2, tn3])
 >>> arity(tn1)
 4
 """
from os import scandir, path
from tree import Tree

def path_to_tree(path_name: str) -> Tree:
 """
 Return a Tree representing filesystem starting from pathname.
 """
 return Tree((path_name, [f.name for f in scandir(path_name)]),
 [path_to_tree(path.join(path_name, f.name))
 for f in scandir(path_name)
 if f.is_dir()])
pass in a function

def count_if(t: Tree, p: Callable[[object], bool]) -> int:
 """
 Return number of values in Tree t that satisfy predicate p(value).

 Assume predicate p is defined on t’s values

 >>> def p(v): return v > 4
 >>> t = descendants_from_list(Tree(0),
 [1, 2, 3, 4, 5, 6, 7, 8], 3)
 >>> count_if(t, p)
 4
 >>> def p(v): return v % 2 == 0
 >>> count_if(t, p)
 5
 """
def list_leaves(t: Tree) -> int:

 Return list of values in leaves of t.

 >>> t = Tree(0)
 >>> list_leaves(t)
 [0]
 >>> t = descendants_from_list(Tree(0),
 [1, 2, 3, 4, 5, 6, 7, 8], 3)
 >>> list_ = list_leaves(t)
 >>> list_.sort() # so list_ is predictable to compare
 >>> list_
 [3, 4, 5, 6, 7, 8]
 """
traversal

The functions and methods we have seen get information from every node of the tree — in some sense they traverse the tree.

Sometimes the order of processing tree nodes is important: do we process the root of the tree (and the root of each subtree...) before or after its children? Or, perhaps, we process along levels that are the same distance from the root?
def preorder_visit(t: Tree, act: Callable[[Tree], Any]) -> None:

 Visit each node of Tree t in preorder, and act on the nodes as they are visited.

 >>> t = descendants_from_list(Tree(0),
 [1, 2, 3, 4, 5, 6, 7], 3)
 >>> def act(node): print(node.value)
 >>> preorder_visit(t, act)
 0
 1
 4
 5
 6
 2
 7
 3

act(t)
for c in t.children:
 preorder_visit(c, act)
def postorder_visit(t: Tree, act: Callable[[Tree], Any]) -> None:
 """
 Visit each node of t in postorder, and act on it when it is visited.
 """

>>> t = descendants_from_list(Tree(0),
 [1, 2, 3, 4, 5, 6, 7], 3)
>>> def act(node): print(node.value)
>>> postorder_visit(t, act)
4
5
6
1
7
2
3
0
"""
def levelorder_visit(t: Tree, act: Callable[[Tree], Any]) -> None:
 """
 Visit every node in Tree t in level order and act on the node as you visit it.
 """

 >>> t = descendants_from_list(Tree(0),
 [1, 2, 3, 4, 5, 6, 7], 3)
 >>> def act(node): print(node.value)
 >>> levelorder_visit(t, act)
 0
 1
 2
 3
 4
 5
 6
 7
 """
You may have noticed in the last slide there were no recursive calls, and a queue was used to process a recursive structure in level order.

Careful use of a stack allows you to process a tree in preorder.
preorder tracing...
notes...