Write append method

first...

Read over the _init_ method for class _LLNode_ and _LinkedList_.

class LinkedListNode:
 """
 Node to be used in linked list

 ___ Attributes ___
 next_ - successor to this LinkedListNode
 value - data represented by this LinkedListNode
 """
 next_: Union["LinkedListNode", None]

 def __init__(self, value: object,
 next_: Union["LinkedListNode", None]=None) -> None:
 """
 Create LinkedListNode self with data value and successor next

 >>> LinkedListNode(5).value
 5
 >>> LinkedListNode(5).next_
 """
 self.value, self._next = value, next_

class LinkedList:
 """
 Collection of LinkedListNodes

 ___ Attributes ___
 front - first node of this LinkedList
 back - last node of this LinkedList
 size - number of nodes in this LinkedList, \(\geq 0 \)
 """
 front: LinkedListNode
 back: LinkedListNode
 size: int

 def __init__(self) -> None:
 """
 Create an empty linked list.
 """
 self.front, self.back, self.size = None, None, 0

 (continued on next page)
def append(self, value: object) -> None:
 ""
 Insert a new LinkedListNode with value after self.back.
 ""

 >>> lnk = LinkedList()
 >>> lnk.append(5)
 >>> lnk.size
 1
 >>> print(lnk.front)
 5 ->|
 >>> lnk.append(6)
 >>> lnk.size
 2
 >>> print(lnk.front)
 5 -> 6 ->|
 ""
 pass

1. What if this is the first node being appended? Show this with a diagram.

2. What if there are already some nodes in the list? Show this with a diagram.

Now implement the body of append