Week 9: Tree Mutation

Arnamoy Bhattacharyya
Agenda

1. A bunch of exercises
2. Insert a node in BST
Refresher BST:
Definition

- Add ordering conditions to a binary tree:
 - data are comparable
 - data in left subtree are less than node.data
 - data in right subtree are more than node.data
Find a value in a BST

Find value 5, if present...
Find value 13, if present...
Find value 12, if present...

How many nodes do we visit (say, in preorder) to find out the following:
Why binary search trees?

Searches that are directed along a single path are efficient:

- a BST with 1 node has height 1
- a BST with 3 nodes may have height 2
- a BST with 7 nodes may have height 3
- a BST with 15 nodes may have height 4
- a BST with n nodes may have height $\log_2 n$
 - 1,000,000 nodes \Rightarrow height < 20

If the BST is “balanced”, then we can check whether an element is present in about $\log n$ node accesses

\log is eqv to \log_2
Warm up Exercise:

```python
def bst_distance(node: BinaryTree, val: object) -> int:
    
    Find distance of a node with the value from the root

@param BinaryTree node: The binary tree
@param object val: Value to find in the node
@return: int

>>> tree = BinaryTree(4)
>>> bst_distance(tree, 4)
0
>>> tree = BinaryTree(4, BinaryTree(3, BinaryTree(1)), BinaryTree(5))
>>> bst_distance(tree, 1)
2
```
Exercise 2: Code Testing

Problem:

Check whether a given Binary Tree is a BST
Exercise 3: Mutation

```python
def tree_add(node: Union[BinaryTree, None], num: float) -> BinaryTree:
    """
    Adds num to each node of the Binary Tree and return a modified Tree
    Assumes the
    """
    @param BinaryTree|None node: The binary tree
    @param float num: number to add
    @rtype: BinaryTree

>>> tree_add(None, 5) is None
True
>>> tree_add(BinaryTree(2, BinaryTree(1), BinaryTree(3)), 2)
BinaryTree(4, BinaryTree(3, None, None), BinaryTree(5, None, None))
```
Mutation: BST Insert

Insert must ensure BST condition holds:

• Left subtree of node < node.data
• Right subtree of node > node.data
How would insert work?

insert value 7?

insert value 10?
```python
def insert(node: Union[BinaryTree, None], value: object) -> BinaryTree:
    
    Insert value in BST rooted at node if necessary, and return new root.
    
    Assume node is the root of a Binary Search Tree.

    @param BinaryTree|None node: root of a binary search tree.
    @param object value: value to insert into BST, if necessary.
    @rtype: BinaryTree

>>> insert(None, 5)
BinaryTree(5, None, None)
>>> b = BinaryTree(5)
>>> b1 = insert(b, 3)
>>> print(b1)
5
    3
<BLANKLINE>
```

Insert implementation