CSC148 L5102
Introduction to Computer Science
Joe Lim
joe.lim@utoronto.ca
Office Hours: 5-6pm PB150
http://www.cdf.toronto.edu/~csc148h/winter/
Reminders

- A2 Due Date: March 24 @ 10:00p.m.
Outline

■ Recursion Efficiency
■ Searching
■ Height Analysis
■ Sorting
■ Big-Oh on paper
Redundancy

Some recursive functions “write themselves – you write down the base case and general case from a definition, and you have a program

def fibonacci(n):
 """
 Return the nth fibonacci number, that is, n if n < 2,
 or fibonacci(n-2) + fibonacci(n-1)
 otherwise.
 """

 @param int n: a non-negative integer
 @rtype: int
 """

 pass
Break our usual rule about expanding a branching recursive in order to see how much computation is spawned by fibonacci(29)

```python
if n < 2:
    return n
else:
    return fibonacci(n-2) + fibonacci(n-1)
```
def fib_memo(n, seen):
 """
 Return the nth fibonacci number reasonably quickly.
 @param int n: index of a fibonacci number
 @param dict[int, int] seen: already-seen results
 """
 if n not in seen:
 seen[n] = (n if n < 2 else fib_memo(n-2, seen) +
 fib_memo(n-1, seen))
 return seen[n]
Running out of stack space

Some programming languages have better support for recursion than others; python may run out of space on its stack for recursive function calls ...

Sometimes you can re-set system defaults (see A2’s puzzle_tools.py)
Suppose \(v\) refers to a number. How efficient is the following statement in its use of time?

\[
v \text{ in } [97, 36, 48, 73, 156, 947, 56, 236]
\]

Roughly how much longer would the statement take if the list were 2, 4, 8, 16, \ldots times longer?

Does it matter whether we used a built-in Python list or our implementation of LinkedList?
Add order ...

Suppose we know the list is sorted in ascending order, see `sorted_list.py`

How does the running time scale up as we make the list 2, 4, 8, 16, ... times longer?
\[\lg(n) \]

Key insight: the number of times I repeatedly divide \(n \) in half before I reach 1 is the same as the number of times I double 1 before I reach (or exceed) \(n \): \(\log_2(n) \), often known in CS as \(\lg n \), since base 2 is our favourite base.

For an \(n \)-element list, it takes time proportional to \(n \) steps to decide whether the list contains a value, but only time proportional to \(\lg(n) \) to do the same thing on an ordered list.

What does that mean if \(n \) is 1,000,000? What about 1,000,000,000?
Trees

How efficient is `__contains__` on each of the following:

- Our general Tree class?
- Our general BTNode class?
- Our BST class?

The last case should probably be answered “depends...”
Node packing ...

Maximum number of nodes in a binary tree of height:

- 0
- 1?
- 2?
- 3?
- 4?
- n?
Invert node packing ...

if \(n < 2^h \leq 2n \), then take \(\lg \) from both sides:

\[
h \leq \lg(n) + 1
\]

... where \(h \) is the minimum height of the tree to pack \(n \) nodes

If our BST is tightly packed (aka balanced), we use proportional to \(\lg(n) \) time to search \(n \) nodes
Sorting

How does the time to sort a list with n elements vary with n?
It depends:
- Bubble sort
- Selection sort
- Insertion sort
- Some other sort?
Quick sort

Idea: break a list up (partition) into the part smaller than some value (pivot) and not smaller than that value, sort those parts, then re-combine the list:

```python
def qs(L):
    ''' (list) -> list
    '\n    if len(L) < 2:
        # copy of L
        return L[:]
    else:
        return (qs([I for I in L if I < L[0]]) +
                [L[0]] + qs([I for I in L[1:] if I >= L[0]]))
```
Counting quick sort: $n = 7$

$$qs([4,2,6,1,3,5,7])$$

$$qs([2,1,3]) + [4] + qs([6,5,7])$$

$$[1,2,3] + [4] + [5,6,7]$$

$$[1,2,3,4,5,6,7]$$
The stakes are very high when two algorithms solve the same problem but scale so differently with the size of the problem (we’ll call that \(n \)). We want to express this scaling in a way that:

- Simple
- Ignores the differences between different hardware, other processes on computer
- Ignores special behaviour for small \(n \)
Big-O definition

Suppose the number of “steps” (operations that don’t depend on n, the input size) can be expressed as $t(n)$. We say that $t \in O(g)$ if:

- There are positive constants c and B so that for every natural number n no smaller than B, $t(n) \leq cg(n)$

Use graphing software on:
$t(n) = 7n^2$ $t(n) = n^2 + 396$ $t(n) = 3960n + 4000$

To see that the constant c, and the slower-growing terms don’t change the scaling behaviour as n gets large
Cont’d

if $t \in \mathcal{O}(n)$, then it’s also the case that $t \in \mathcal{O}(n^2)$, and all larger bounds

$$\mathcal{O}(1) \subseteq \mathcal{O}(\lg(n)) \subseteq \mathcal{O}(n) \subseteq \mathcal{O}(n^2) \subseteq \mathcal{O}(n^3) \subseteq \mathcal{O}(2n) \subseteq \mathcal{O}(3n) \ldots$$