Write append method

first...

Read over the __init__ method for class LLNode and LinkedList:

class LinkedListNode:
 ""
 Node to be used in linked list

 === Attributes ===
 @param LinkedListNode next_: successor to this LinkedListNode
 @param object value: data this LinkedListNode represents
 ""

def __init__(self, value, next_=None):
 ""
 Create LinkedListNode self with data value and successor next_.

 @param LinkedListNode self: this LinkedListNode
 @param object value: data of this linked list node
 @param LinkedListNode|None next_: successor to this LinkedListNode.
 @rtype: None
 ""
 self.value, self.next_ = value, next_

class LinkedList:
 ""
 Collection of LinkedListNodes

 === Attributes ===
 @param: LinkedListNode front: first node of this LinkedList
 @param LinkedListNode back: last node of this LinkedList
 @param int size: number of nodes in this LinkedList
 a non-negative integer
 ""

def __init__(self):
 ""
 Create an empty linked list.

 @param LinkedList self: this LinkedList
 @rtype: None
 ""
 self.front, self.back self.size = None, None, 0

(continued on next page)
Now, read the header and docstring for the method `append`, and then answer the questions that follow it.

```python
def append(self, value):
    """
    Insert a new LinkedListNode with value after self.back.

    @param LinkedList self: this LinkedList.
    @param object value: value of new LinkedListNode
    @rtype: None
    """
    pass
```

1. What if this is the first node being appended? Show this with a diagram.

2. What if there are already some nodes in the list? Show this with a diagram.

Now implement the body of `append`