
for Loops

CSC120
Mark Kazakevich

Repeating code
● We’ve talked a bit about how functions are used to

minimize repetitive code

● If we have a block of code that we want to be able to bring
up and use any time, and with different data, we can define a
function and put that block of code in it

● Today we’re going to look at another way we can deal with
code that needs to be repeated

Repeating code
● Often there will be times where writing a function isn’t

going to be enough to get rid of your need to repeat code.

● For example:
○ What if you wanted to call a function 1000 times?
○ You can write a function that calls that function 1000

times, but that is going to require a file that is
1000 lines long

○ Not very efficient...

Repeating code
● More relevant example for us:

○ What if we wanted to do something with each
individual character of a string?

○ If we had a string s = ‘hello’
right now we would have to index every element
manually:
s[0], s[1], s[2], … and so on.

○ Not very efficient…

● We want a way to get to all of the values individually
without writing out the index numbers each time

Loops
● In order to help us with this problem, we’re going to

introduce a new concept: Loops

● Simply: Loops allow us to repeat a block of code

● Like if-statements, this is another way to change the
program flow of Python.

● Today we will be looking at one type of loop in Python,
the for loop

for loops
● A for loop is a statement that allows us to repeat code a

set number of times.

● The number of times it repeats depends on some ordered
set of values
○ For example, the characters in a string from left to right

● for loops take each each value in the ordered set, save it to
a variable, and execute the code in the loop
○ It then repeats this process for every element.

● Let’s take a closer look

for loop Format
for element in set:

loop body
This block is
considered one
for loop

Let’s talk about what these words all mean

for loop Format
for element in set:

loop body

for
Indicates that this is a for loop statement

for loop Format
for element in set:

loop body

element in set
element is the variable name we are going to give to
every element in set as we repeat the code
We call this iterating over a set:
“For every element in set”

for loop Format
for element in set:

loop body

loop body
● These lines of code (which are indented in the for

loop), will repeat for every element in the set.
● We can use the value of the variable element

for the current iteration and work with it all the
way to the end of the for loop

Let’s see an example
s = ‘hello’
for char in s:

print(char)

Let’s see an example
s = ‘hello’
for char in s:

print(char)

for
Indicates that this is a for loop statement

Let’s see an example
s = ‘hello’
for char in s:

print(char)

char in s
We are going to “iterate” over the string s.
Every time we repeat the loop body, we will change
the value of the variable char to be the next character
in the string s

Let’s see an example
s = ‘hello’
for char in s:

print(char)

print(char)
This is the loop body. We are using the variable char
which is the current character of s that we have
iterated to.

Running the example
s = ‘hello’
for char in s:

print(char)

1st iteration of loop:
Current value of char: h

hPython shell output
after running loop
body:

Running the example
s = ‘hello’
for char in s:

print(char)

2nd iteration of loop:
Current value of char: e

h
e

Python shell output
after running loop
body:

Running the example
s = ‘hello’
for char in s:

print(char)

3rd iteration of loop:
Current value of char: l

and so on..

h
e
l

Python shell output
after running loop
body:

End of the string
s = ‘hello’
for char in s:

print(char)
.
program continues
.
.
.

No more characters in s.
We’re done! We now
move on to the statements
after the for loop
h
e
l
l
o

Something to be careful about
k = 5
m = 1

s = ‘hello’
for k in s:

print(k)

p = k + m

● Do not use variables that
we assigned outside of the
for loop as the name for
each element inside the
for loop.

● You might need it later,
but it will still be assigned
to the last element of the
set (in this case, ‘o’)

Something to be careful about
k = 5
m = 1

s = ‘hello’
for k in s:

print(k)

p = k + m

The last value of k in the loop
was ‘o’

The value of p is:
p = ‘o’ + 1 #error

Rule: use a different variable
name in the loop

Looping over a sequence

for i in range(4):
print(i)

● We can loop over a sequence of numbers
Shell output:
0
1
2
3

Convention: Use the variable i when looping over a
sequence of numbers (with no other context)

Nested loops

for i in range(5):
for j in range(3)

 print(i)

● We can put a loop inside a loop
Here we loop through the
sequence 0 to 4, and for every
element of that sequence, we
also loop through 0 to 2.

We will see how this works in
Wing

Convention: Use the variables i and j when looping
over a sequence of numbers with nested loops

Examples in Wing

