
Functions

CSC120
Mark Kazakevich

Functions seem useful!
● Without using functions in Python, all we have is a few math

operators:
○ +, -, *, //, %, etc.

● But we want to do more than that!

● The functions we’ve used so far demonstrate that indeed we can do
more than just basic operations in Python

But notice something...
● When I told you about functions like abs(x), how much

time did you spend thinking about how they work?

● Most likely, not much.
○ You probably just thought “Ok, cool. Python can find

the absolute value” and just used the function to do
your work

● That’s a good thing! And….
○ It’s actually part of what functions are all about!

Functions are meant to hide the details
● We don’t know what the computer actually does to calculate the

absolute value of a number

● If we needed to know how every function works before we can use
it, we would never get any work done!

● Right now, we want to use functions to do interesting things

● When we see something like abs(x), we assume it’s going to work
as expected:
○ We assume the people who made Python also made a good

absolute value function for it

So how do functions in Python
work?

How functions work
The three parts to a what a function in Python does:
1. ‘Call’ the function with some arguments
2. Do something with the argument values
3. Produce a ‘return value’

Part 1: “Calling” the function
● Whenever we type a function in the shell and press enter, we

are ‘calling’ that function

> abs(9)

“I called the function abs with the value 9”

● The ‘9’ is called an argument to the function

Part 1: “Calling” the function
● Some functions can take more than one argument

> max(3, 5)

“I called the function max with the values 3 and 5”

Arguments (con’t)
● Argument can be a literal value (no further evaluation needed)

> abs(-2) Argument value: -2

● Or, it can be an expression

> abs(10 + 6) Argument value: 10 + 6 = 16

● Because arguments can be expressions, we have to evaluate
them before the function can work with them

So that’s part 1
The three parts to a what a function in Python does:
1. ‘Call’ the function with some arguments
2. Do something with the argument values
3. Produce a ‘return value’

Part 2: Do something with the input
● A function that is called with an argument should do

something with that argument

> abs(-2)

● Python does something to find the absolute value of -2

and that’s part 2!

The three parts to a what a function in Python does:
1. ‘Call’ the function with some arguments
2. Do something with the argument values
3. Produce a ‘return value’

Part 3: Produce a “return value”
● In the shell, after we press Enter and the function is called,

we saw that we get back a value

> abs(-2)
2

● The ‘2’ that we get back after calling abs(-2) is called the
return value of the function

Return Values
● The return value of a function is the value that the function

evaluates to.

● For example, we say abs(-2) evaluates to 2

● We can use the return value of the function the same way we
use the value we get from an expression
○ We can assign it to a variable
○ We can use it as an argument to another function

> a = abs(-2)
> a
2

We can assign the return values to variables

> max(abs(-2), 1)
2

We can use them as arguments to other
functions

Let’s say we wanted a function
that adds 3 to an int.

There is no Python built-in
function for that.

So we create our own!

Let’s see how to define our
own functions

