
CSC120H Lab 9

1 Objectives

• Practise querying a SQL database

• Practise creating and manipulating tables in a SQL database

2 Querying SQL databases

A SQL database is a collection of tables of data, where each table contains columns that indicate what the
data represents, and rows which contain records of data for those columns.
For example: the following is a table of flight information:

Each row (or ‘record’) in the table corresponds to a flight. The columns give us information about each
flight record, including its airline, flight number, origin airport, destination airport, and total flight time in
minutes.
From the Labs page, download the file ‘flight_data.db’. This file is a SQL database file, which contains
data about flights. Right now, it only contains the flight table above.

Running SQL Queries review
We run SQL queries so that we can obtain data from tables in a database. We send a query command to
the database, and the database gives us back all of the rows that match that query. SQL queries can only
be interpreted by the database software, SQLite3, and are not alone interpretable by Python, which is why
we have to import sqlite3.

The SQL language includes a SELECT statement, which indicates that we want to get (or ‘select’) certain
rows from the database. A SELECT statement always requires at the minimum two parameters:
1. The table in the database we want to select data from.
2. The names of the columns in that table that we want to select, or a star character (*) if we want to
select all of the columns.

1



The general format for selecting columns from a database table is:

SELECT <columns> FROM <table>

For example, if we wanted to select all columns from our flights table, we would write:

SELECT * FROM flights

This will select all of the columns from flights. But which rows does it select? By default, all rows in the
table will be selected (we will later specify how to select rows more specifically).

What if we wanted to select only the airline and flight number columns from our flights table? We would
write:

SELECT airline, flight_number FROM flights

Here we specified which columns we want, and we will only get those columns from the table. By default we
will still get all of the rows.

Let’s now run these queries in Python to actually get some data back from our database. Download the
lab9_functions.py and lab9_main.py files.
In these files, we use an import statement in lab9_main.py to bring in all of the functions that you will
write in lab9_functions.py. You will call your functions inside of the if __name__ == ‘__main__’ block
of lab9_main.py.

Look inside the lab9_functions.py file. The first function defined there is a helper function, run_query().
Inside this function, you will notice the code we’ve looked at in lecture for connecting, getting a cursor,
executing a query through the cursor, fetching the data from the cursor, and closing the connection. With
this function, you will not have to re-write these steps, which are required for every query.
Notice that the parameter args in that function has a default value of None. This means we don’t have
to supply an argument for args if we don’t need it, which will be the case for our first function.

Query 1: Let’s start by completing the function get_all_flights() in lab9_functions.py, which should
query the database for all flights records and columns from the flights table.
Replace the query string with the correct query string for this query. In this function, run query() is called
for you and the result is returned.
Now, go to your lab9_main.py, and uncomment the call to print_records() for Query 1. Run the file and
check the shell to make sure you get what you expect. If you’re unsure, ask your TA.

Task: Complete the functions for queries 2-5. Uncomment out the correct place in the main block of
lab9_main.py and run the file for each function you complete.

2



Selecting specific rows: Conditional statements
In the previous examples, we were specifying which columns we want to select. Let’s now add to our queries
to also limit which rows we should select.

We specify which rows we want by indicating a condition on the values for a particular column. For ex-
ample, if we want still want all of the columns, but also wanted to limit the the values for the the minutes

column to be more than 200 minutes, we would use the WHERE clause like so:

SELECT * FROM flights WHERE minutes > 200

In addition to the greater than and less than comparisons, we can also do equality, if we wanted to get get
the records where the origin airport is LAX, we would write:

SELECT * FROM flights WHERE origin = ‘LAX’

Notice that LAX has quotes around it. These are necessary for strings in SQL, and might cause issues if you
accidentally forget to leave them out.
Instead, we usually do something called string formatting, which lets us define places in the string where
we want to place values, and then separately define those values to be replaced later. For example, we can
put a questions mark in place of where LAX would be:

query = ‘SELECT * FROM flights WHERE origin = ?’

and then add an extra tuple argument to run_query():
run_query(query, (‘LAX’,)) (remember the comma for one-element tuples).

This will replace the question mark with the appropriate value, and will format it the correct way automat-
ically.
You can also put multiple question marks, and then have a tuple with multiple elements. The question
marks will be replaced left to right by the values of the tuples in order.
Here’s an example of using the AND operator to check for two different conditions at the same time:

>>> query = ‘SELECT * FROM flights WHERE origin = ? AND minutes > ?’

>>> run_query(‘flight_data.db’, query, (‘LAX’, 200))

This returns all rows that have LAX as the origin and took longer than 200 minutes.

Task: Complete the functions for Queries 6 to 10. Make sure you also print them properly in the main
block in the other file.

3 Manipulating Tables

So far, we’ve been querying the database to select certain data from the tables. What if we want to actually
edit the database data ourselves?
1. Creating a new table
After the query functions for section 2 above, there is a function called create_flights_table() This
function was the function used to create the flights table in the databse from a flights.csv file.
Notice that it uses the CREATE TABLE command, followed by the column names and their types (airline is
TEXT, while flight_number is a NUMBER).
Then, after reading each line of the csv file into a list of strings, we pick off each element, and then run an
INSERT statement that inserts a new record into the flights table. Notice how we use string formatting here
as well, with 5 question marks and 5 variables.

3



Task:
Download the airlines.csv file from the Labs page. Each row in this file has an airline code and the full
name of that airline.
Write a function create_airlines_table() which creates a table called airlines based on the data in
airlines.csv. Use the appropriate names for the columns (you can get them from the first line of the csv
file).

When you are done, run your function create_airlines_table() to create that database (you can comment
out the line in the main block or just run the function yourself). You only need to run it once, since you
only need to create the table once.
(If you feel like you’ve messed up the database too much while trying to write this function, you can always
download a fresh copy from the Labs page).

Try running a SELECT * query on the airlines tables. Make sure you’re getting back the correct data.

4 Joining Tables

Sometimes, there are columns in two tables that are similar, which can allow us to create SELECT queries
across multiple tables.
For example, the airline column in the flights table represents the same kind of data as the code column
in the airlines table.
Let’s say we want to get all of the full names of the airlines for the flights in the flights table. The names
are only available in the airlines table. So, we will have to join the tables together on the airline codes
(which both tables have), and then select only the name column from the airlines table.
Here is how that would look in SQL:

SELECT airlines.name FROM flights JOIN airlines

ON airlines.code = flights.airline

This query statement is larger than we’ve seen so far. Here is a breakdown of each part and what it is
expressing:

1. SELECT airlines.name: We want to select the name column from the airlines table (since that’s the
column with the full names).
2. FROM flights JOIN airlines: We want to combine the two tables together since we want to get the
names for the airline codes for the flights in the flights table.
3. ON airlines.code = flights.airline: We want to compare these two columns when combining (join-
ing) the tables.

This may be a bit confusing at first, and we will go over it in lecture. For now, try completing the function
for this query and run it to see what you get. You can create a multiple line string using
docstring quotes """:

query = """SELECT airlines.name FROM flights JOIN airlines

ON airlines.code = flights.airline"""

Compare the selected data to the airline column of the flights table.

Task: Attempt to complete the remaining query functions. Ask your TA for assistance if needed.

4


