1. In the list below, i passes of the selection sort algorithm have been completed, and the double bar separates the sorted part of the list from the unsorted part.

\[
\begin{array}{c|c}
L & \text{sorted} & \text{unsorted} \\
\end{array}
\]

(a) $\text{get_index_of_smallest}(L, i)$ works by comparing pairs of items from the unsorted section. If there are n items in L, when $\text{get_index_of_smallest}(L, i)$ is executed, how many pairs of items are compared? (Your answer should be a formula involving n and i.)

(b) For function $\text{get_index_of_smallest}(L, i)$, is there a worst case and a best case?

(c) In terms of the number of items in the unsorted section, does $\text{get_index_of_smallest}$ have constant running time, linear running time, quadratic running time, or some other running time?

 (a) constant (b) linear (c) quadratic (d) something else

(d) In function selection_sort, the first time that function $\text{get_index_of_smallest}$ is called, i is 0; the second time, i is 1; and so on. What value does i have the last time that function $\text{get_index_of_smallest}$ is called?

(e) For the call $\text{selection_sort}(L)$, write a formula expressing how many comparisons are made during all the calls to $\text{get_index_of_smallest}$.

(f) In terms of the length of the list, does selection_sort have constant running time, linear running time, quadratic running time, or some other running time?

 (a) constant (b) linear (c) quadratic (d) something else