
CSC 236: Program Correctness Axioms

Where A, A0, A1 are computer programs, P, Q, R are propositions, and b is a boolean expression
in the program variables,

Base rules (programs)
(where ‘‘skip’’ is the null program)
{P}skip{Q} ⇔ P→Q
(skip;A) = (A;skip) = A

Base rule (specifications)
You can conclude that {false}A{P} (for any A and P).

Assignment rule
If you know that P→(Q[x:=E]),
you can conclude that {P}x:=E{Q}.

Sequential composition rule
If you know that {P}A0{Q} and {Q}A1{R},
you can conclude that {P}A0;A1{R}.

Conditional rules
If you know that {P∧b}A{Q} and P∧¬b→Q,
you can conclude that {P} if b then A end if {Q}.
If you know that {P∧b}A0{Q} and {P∧¬b}A1{Q},
you can conclude that {P} if b then A0 else A1 end if {Q}.

Loop rule
If you know that {P∧b}A{P},
you can conclude that {P} while b do A end while {P∧¬b}.

Note that we do not use induction to prove partial correctness of a loop in this scheme. The loop
inference rule in effect contains the induction within itself. However, we still need to prove
termination separately (probably with induction), unless we use the ‘‘loop rule with variant’’:

Loop rule with variant
Where A is a computer program, P is a proposition, e is an integer expression in the program
variables, and ‘‘prev’’ is a constant value for each loop iteration,
If you know that {P∧(e>0)∧(prev=e)} A {P∧(e < prev)},
you can conclude that {P} while e>0 do A end while {P∧(e≤0)}.


