CSC 236 midterm

29 October 2004, 10:00, CG 150
Name (underline surname):

Student number:

Please circle your tutorial section:
F 10, surname A-F: Tovi Grossman, BA 3008
F 10, surname G-L: Dennis Kao, BA 3012
F 10, surname M-S: Han Liu, BA 3116
F 10, surname T-Z: Zhao Dan, BA B025

Aids permitted: One double-sided $81 / 2 \times 11$ " piece of paper. Calculators are not permitted.
Total: 30 marks.
Time allotted: 45 minutes.

Since time is short, be careful not to get stuck on one question to the exclusion of others. The amount of marks or answer-space allotted does not indicate how long it will take you to complete the question, nor does the size of the answer-space indicate the size of the correct answer.

Answer all questions. Answer questions in the space provided.

Do not open this booklet until you are instructed to.

Do not write anything in the following table:

	value	mark
1	10	
2	10	
3	10	
total	30	

1.

a) Prove that for all $n \in N, \sum_{i=0}^{n} 2^{-i}=2-2^{-n}$.
b) Prove that the following program is partially correct (i.e. you do not need to prove termination).

Precondition: $n \geq 0$
Postcondition: $x=n^{2}-n+5$
Loop invariant: $x=i^{2}-i+5$

```
x := 5
i := 0
while i < n do
    x := x + i + i
    i := i + 1
end while
```

2. The Fibonacci numbers can be defined as follows:

$$
\begin{aligned}
& \mathrm{F}(0)=0 \\
& \mathrm{~F}(1)=1 \\
& \text { For } i \in \mathrm{Z} \text {, where } i \geq 2, \quad \mathrm{~F}(i)=\mathrm{F}(i-1)+\mathrm{F}(i-2)
\end{aligned}
$$

(Or we can start with $\mathrm{F}(1)=\mathrm{F}(2)=1$. Of course $\mathrm{F}(2)$ is 1 by either definition.)
The following program computes the nth Fibonacci number, where all variables are of type int:

```
i := 1
thisnum := 1
lastnum := 0
while i < n do
    nextnum := thisnum + lastnum
    lastnum := thisnum
    thisnum := nextnum
    i := i + 1
end while
```

a) Using " $F(i)$ " to indicate the i th Fibonacci number, specify a precondition and a postcondition for this program.

Precondition:

Postcondition:
b) Using " $F(i)$ " to indicate the i th Fibonacci number, specify a loop invariant for the 'while' loop.
c) We can prove the termination of this program by observing certain crucial facts about the value of $n-i$. State any two of them.
3. This question again discusses the Fibonacci numbers, where (as stated in question 2),

$$
\begin{aligned}
& \mathrm{F}(0)=0 \\
& \mathrm{~F}(1)=1 \\
& \text { For } i \in \mathrm{Z} \text {, where } i \geq 2, \quad \mathrm{~F}(i)=\mathrm{F}(i-1)+\mathrm{F}(i-2)
\end{aligned}
$$

The beginning of the sequence looks like this:
$0,1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots$

Note that every third element of the sequence is even.
Use induction to prove this, i.e. that $\mathrm{F}(i)$ is a multiple of 2 iff i is a multiple of 3 .

